Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruth Halaban is active.

Publication


Featured researches published by Ruth Halaban.


Cancer Research | 2004

Expression Profiling Reveals Novel Pathways in the Transformation of Melanocytes to Melanomas

Keith S. Hoek; David L. Rimm; Kenneth R. Williams; Hongyu Zhao; Stephan Ariyan; Aiping Lin; Harriet M. Kluger; Aaron J. Berger; Elaine Cheng; E. Sergio Trombetta; Terence Wu; Michio Niinobe; Kazuaki Yoshikawa; Gregory E. Hannigan; Ruth Halaban

Affymetrix and spotted oligonucleotide microarrays were used to assess global differential gene expression comparing normal human melanocytes with six independent melanoma cell strains from advanced lesions. The data, validated at the protein level for selected genes, confirmed the overexpression in melanoma cells relative to normal melanocytes of several genes in the growth factor/receptor family that confer growth advantage and metastasis. In addition, novel pathways and patterns of associated expression in melanoma cells not reported before emerged, including the following: (a) activation of the NOTCH pathway; (b) increased Twist expression and altered expression of additional transcriptional regulators implicated in embryonic development and epidermal/mesenchymal transition; (c) coordinated activation of cancer/testis antigens; (d) coordinated down-regulation of several immune modulation genes, in particular in the IFN pathways; (e) down-regulation of several genes implicated in membrane trafficking events; and (f) down-regulation of growth suppressors, such as the Prader-Willi gene NECDIN, whose function was confirmed by overexpression of ectopic Flag-necdin. Validation of differential expression using melanoma tissue microarrays showed that reduced ubiquitin COOH-terminal esterase L1 in primary melanoma is associated with worse outcome and that increased expression of the basic helix-loop-helix protein Twist is associated with worse outcome. Some differentially expressed genes reside on chromosomal regions displaying common loss or gain in melanomas or are known to be regulated by CpG promoter methylation. These results provide a comprehensive view of changes in advanced melanoma relative to normal melanocytes and reveal new targets that can be used in assessing prognosis, staging, and therapy of melanoma patients.


Cell | 2011

In Vivo Identification of Tumor- Suppressive PTEN ceRNAs in an Oncogenic BRAF-Induced Mouse Model of Melanoma

Florian A. Karreth; Yvonne Tay; Daniele Perna; Ugo Ala; Shen Mynn Tan; Alistair G. Rust; Gina DeNicola; Kaitlyn A. Webster; Dror Weiss; Pedro A. Pérez-Mancera; Michael Krauthammer; Ruth Halaban; Paolo Provero; David J. Adams; David A. Tuveson; Pier Paolo Pandolfi

Summary We recently proposed that competitive endogenous RNAs (ceRNAs) sequester microRNAs to regulate mRNA transcripts containing common microRNA recognition elements (MREs). However, the functional role of ceRNAs in cancer remains unknown. Loss of PTEN, a tumor suppressor regulated by ceRNA activity, frequently occurs in melanoma. Here, we report the discovery of significant enrichment of putative PTEN ceRNAs among genes whose loss accelerates tumorigenesis following Sleeping Beauty insertional mutagenesis in a mouse model of melanoma. We validated several putative PTEN ceRNAs and further characterized one, the ZEB2 transcript. We show that ZEB2 modulates PTEN protein levels in a microRNA-dependent, protein coding-independent manner. Attenuation of ZEB2 expression activates the PI3K/AKT pathway, enhances cell transformation, and commonly occurs in human melanomas and other cancers expressing low PTEN levels. Our study genetically identifies multiple putative microRNA decoys for PTEN, validates ZEB2 mRNA as a bona fide PTEN ceRNA, and demonstrates that abrogated ZEB2 expression cooperates with BRAF V600E to promote melanomagenesis.We recently proposed that competitive endogenous RNAs (ceRNAs) sequester microRNAs to regulate mRNA transcripts containing common microRNA recognition elements (MREs). However, the functional role of ceRNAs in cancer remains unknown. Loss of PTEN, a tumor suppressor regulated by ceRNA activity, frequently occurs in melanoma. Here, we report the discovery of significant enrichment of putative PTEN ceRNAs among genes whose loss accelerates tumorigenesis following Sleeping Beauty insertional mutagenesis in a mouse model of melanoma. We validated several putative PTEN ceRNAs and further characterized one, the ZEB2 transcript. We show that ZEB2 modulates PTEN protein levels in a microRNA-dependent, protein coding-independent manner. Attenuation of ZEB2 expression activates the PI3K/AKT pathway, enhances cell transformation, and commonly occurs in human melanomas and other cancers expressing low PTEN levels. Our study genetically identifies multiple putative microRNA decoys for PTEN, validates ZEB2 mRNA as a bona fide PTEN ceRNA, and demonstrates that abrogated ZEB2 expression cooperates with BRAF(V600E) to promote melanomagenesis.


Pigment Cell & Melanoma Research | 2010

PLX4032, a selective BRAFV600E kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAFWT melanoma cells

Ruth Halaban; Wengeng Zhang; Antonella Bacchiocchi; Elaine Cheng; Fabio Parisi; Stephan Ariyan; Michael Krauthammer; James P. McCusker; Yuval Kluger; Mario Sznol

BRAFV600E/K is a frequent mutationally active tumor‐specific kinase in melanomas that is currently targeted for therapy by the specific inhibitor PLX4032. Our studies with melanoma tumor cells that are BRAFV600E/K and BRAFWT showed that, paradoxically, while PLX4032 inhibited ERK1/2 in the highly sensitive BRAFV600E/K, it activated the pathway in the resistant BRAFWT cells, via RAF1 activation, regardless of the status of mutations in NRAS or PTEN. The persistently active ERK1/2 triggered downstream effectors in BRAFWT melanoma cells and induced changes in the expression of a wide‐spectrum of genes associated with cell cycle control. Furthermore, PLX4032 increased the rate of proliferation of growth factor‐dependent NRAS Q61L mutant primary melanoma cells, reduced cell adherence and increased mobility of cells from advanced lesions. The results suggest that the drug can confer an advantage to BRAFWT primary and metastatic tumor cells in vivo and provide markers for monitoring clinical responses.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab

Jianda Yuan; Matthew Adamow; Brian A. Ginsberg; Teresa Rasalan; Erika Ritter; Humilidad F. Gallardo; Yinyan Xu; Evelina Pogoriler; Stephanie L. Terzulli; Deborah Kuk; Katherine S. Panageas; Gerd Ritter; Mario Sznol; Ruth Halaban; Achim A. Jungbluth; James P. Allison; Lloyd J. Old; Jedd D. Wolchok; Sacha Gnjatic

Ipilimumab, a monoclonal antibody against cytotoxic T lymphocyte antigen 4 (CTLA-4), has been shown to improve survival in patients with advanced metastatic melanoma. It also enhances immunity to NY-ESO-1, a cancer/testis antigen expressed in a subset of patients with melanoma. To characterize the association between immune response and clinical outcome, we first analyzed NY-ESO-1 serum antibody by ELISA in 144 ipilimumab-treated patients with melanoma and found 22 of 140 (16%) seropositive at baseline and 31 of 144 (22%) seropositive following treatment. These NY-ESO-1–seropositive patients had a greater likelihood of experiencing clinical benefit 24 wk after ipilimumab treatment than NY-ESO-1–seronegative patients (P = 0.02, relative risk = 1.8, two-tailed Fisher test). To understand why some patients with NY-ESO-1 antibody failed to experience clinical benefit, we analyzed NY-ESO-1–specific CD4+ and CD8+ T-cell responses by intracellular multicytokine staining in 20 NY-ESO-1–seropositive patients and found a surprising dissociation between NY-ESO-1 antibody and CD8 responses in some patients. NY-ESO-1–seropositive patients with associated CD8+ T cells experienced more frequent clinical benefit (10 of 13; 77%) than those with undetectable CD8+ T-cell response (one of seven; 14%; P = 0.02; relative risk = 5.4, two-tailed Fisher test), as well as a significant survival advantage (P = 0.01; hazard ratio = 0.2, time-dependent Cox model). Together, our data suggest that integrated NY-ESO-1 immune responses may have predictive value for ipilimumab treatment and argue for prospective studies in patients with established NY-ESO-1 immunity. The current findings provide a strong rationale for the clinical use of modulators of immunosuppression with concurrent approaches to favor tumor antigen-specific immune responses, such as vaccines or adoptive transfer, in patients with cancer.


In Vitro Cellular & Developmental Biology – Plant | 1987

bFGF is the putative natural growth factor for human melanocytes.

Ruth Halaban; Sikha Ghosh; Andrew Baird

SummaryNormal human melanocytes, unlike pigment cells from metastatic melanomas, do not survive in culture in routine, serum-supplemented media. The search for natural growth factors for melanocytes has shown that mitogenic activity is ubiquitous in several tissues and in melanomas. Of several known growth factors tested, basic fibroblast growth factor (bFGF) was the only one mitogenic for melanocytes but only in the presence of cyclic-adenosine-monophosphate (cAMP) stimulators. The mitogenic activity toward melanocytes in tissues and melanoma cell extracts had high affinity for heparin and antibodies to bFGF synthetic peptides. These results suggest that one of the growth factors for melanocytes might be bFGF or a bFGF-like polypeptide and that autocrine production of bFGF-like molecules by melanoma cells may contribute to the malignant phenotype of melanocytes. Because acidic FGF (aFGF) did not stimulate growth, the receptors for bFGF on melanocytes might be significantly different from those for a FGF.


Journal of Translational Medicine | 2010

Incidence of the V600K mutation among melanoma patients with BRAF mutations, and potential therapeutic response to the specific BRAF inhibitor PLX4032

Jill C. Rubinstein; Mario Sznol; Anna C. Pavlick; Stephan Ariyan; Elaine Cheng; Antonella Bacchiocchi; Harriet M. Kluger; Deepak Narayan; Ruth Halaban

Activating mutations in BRAF kinase are common in melanomas. Clinical trials with PLX4032, the mutant-BRAF inhibitor, show promising preliminary results in patients selected for the presence of V600E mutation. However, activating V600K mutation is the other most common mutation, yet patients with this variant are currently excluded from the PLX4032 trials. Here we present evidence that a patient bearing the BRAF V600K mutation responded remarkably to PLX4032, suggesting that clinical trials should include all patients with activating BRAF V600E/K mutations.


In Vitro Cellular & Developmental Biology – Plant | 1984

Selective elimination of fibroblasts from cultures of normal human melanocytes

Ruth Halaban; Francis D. Alfano

SummaryThe main obstacle to establishing pure normal human melanocytes in vitro is contamination of the cultures by fibroblasts. The obstacle can be overcome by selective destruction of fibroblasts with geneticin (G418 sulfate). Treatment of mixed cultures with this drug at a concentration of 100 μg/ml for two days results in pure cultures of normal human melanocytes.


Genome Research | 2009

Genome-wide screen of promoter methylation identifies novel markers in melanoma

Yasuo Koga; Mattia Pelizzola; Elaine Cheng; Michael Krauthammer; Mario Sznol; Stephan Ariyan; Deepak Narayan; Annette M. Molinaro; Ruth Halaban; Sherman M. Weissman

DNA methylation is an important component of epigenetic modifications, which influences the transcriptional machinery aberrant in many human diseases. In this study we present the first genome-wide integrative analysis of promoter methylation and gene expression for the identification of methylation markers in melanoma. Genome-wide promoter methylation and gene expression of eight early-passage human melanoma cell strains were compared with newborn and adult melanocytes. We used linear mixed effect models (LME) in combination with a series of filters based on the localization of promoter methylation relative to the transcription start site, overall promoter CpG content, and differential gene expression to discover DNA methylation markers. This approach identified 76 markers, of which 68 were hyper- and eight hypomethylated (LME, P < 0.05). Promoter methylation and differential gene expression of five markers (COL1A2, NPM2, HSPB6, DDIT4L, MT1G) were validated by sequencing of bisulfite-modified DNA and real-time reverse transcriptase PCR, respectively. Importantly, the incidence of promoter methylation of the validated markers increased moderately in early and significantly in advanced-stage melanomas, using early-passage cell strains and snap-frozen tissues (n = 18 and n = 24, respectively) compared with normal melanocytes and nevi (n = 11 and n = 9, respectively). Our approach allows robust identification of methylation markers that can be applied to other studies involving genome-wide promoter methylation. In conclusion, this study represents the first unbiased systematic effort to determine methylation markers in melanoma and revealed several novel genes regulated by promoter methylation that were not described in cancer cells before.


Journal of Immunology | 2015

Combination Therapy with Anti–CTLA-4 and Anti–PD-1 Leads to Distinct Immunologic Changes In Vivo

Rituparna Das; Rakesh Verma; Mario Sznol; Chandra Sekhar Boddupalli; Scott N. Gettinger; Harriet M. Kluger; Margaret K. Callahan; Jedd D. Wolchok; Ruth Halaban; Madhav V. Dhodapkar; Kavita M. Dhodapkar

Combination therapy concurrently targeting PD-1 and CTLA-4 immune checkpoints leads to remarkable antitumor effects. Although both PD-1 and CTLA-4 dampen the T cell activation, the in vivo effects of these drugs in humans remain to be clearly defined. To better understand biologic effects of therapy, we analyzed blood/tumor tissue from 45 patients undergoing single or combination immune checkpoint blockade. We show that blockade of CTLA-4, PD-1, or combination of the two leads to distinct genomic and functional signatures in vivo in purified human T cells and monocytes. Therapy-induced changes are more prominent in T cells than in monocytes and involve largely nonoverlapping changes in coding genes, including alternatively spliced transcripts and noncoding RNAs. Pathway analysis revealed that CTLA-4 blockade induces a proliferative signature predominantly in a subset of transitional memory T cells, whereas PD-1 blockade instead leads to changes in genes implicated in cytolysis and NK cell function. Combination blockade leads to nonoverlapping changes in gene expression, including proliferation-associated and chemokine genes. These therapies also have differential effects on plasma levels of CXCL10, soluble IL-2R, and IL-1α. Importantly, PD-1 receptor occupancy following anti–PD-1 therapy may be incomplete in the tumor T cells even in the setting of complete receptor occupancy in circulating T cells. These data demonstrate that, despite shared property of checkpoint blockade, Abs against PD-1, CTLA-4 alone, or in combination have distinct immunologic effects in vivo. Improved understanding of pharmacodynamic effects of these agents in patients will support rational development of immune-based combinations against cancer.


Nature Genetics | 2015

Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas

Michael Krauthammer; Yong Kong; Antonella Bacchiocchi; Perry Evans; Natapol Pornputtapong; Cen Wu; James P. McCusker; Shuangge Ma; Elaine Cheng; Robert Straub; Merdan Serin; Marcus Bosenberg; Stephan Ariyan; Deepak Narayan; Mario Sznol; Harriet M. Kluger; Shrikant Mane; Joseph Schlessinger; Richard P. Lifton; Ruth Halaban

We report on whole-exome sequencing (WES) of 213 melanomas. Our analysis established NF1, encoding a negative regulator of RAS, as the third most frequently mutated gene in melanoma, after BRAF and NRAS. Inactivating NF1 mutations were present in 46% of melanomas expressing wild-type BRAF and RAS, occurred in older patients and showed a distinct pattern of co-mutation with other RASopathy genes, particularly RASA2. Functional studies showed that NF1 suppression led to increased RAS activation in most, but not all, melanoma cases. In addition, loss of NF1 did not predict sensitivity to MEK or ERK inhibitors. The rebound pathway, as seen by the induction of phosphorylated MEK, occurred in cells both sensitive and resistant to the studied drugs. We conclude that NF1 is a key tumor suppressor lost in melanomas, and that concurrent RASopathy gene mutations may enhance its role in melanomagenesis.

Collaboration


Dive into the Ruth Halaban's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge