Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruth LaPushin is active.

Publication


Featured researches published by Ruth LaPushin.


Oncogene | 1999

The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells

Yiling Lu; Ruth LaPushin; Bruce D. Cuevas; Xianjun Fang; Shuang Xing Yu; Michael A. Davies; Humera Khan; Tatsuro Furui; Muling Mao; Ralph Zinner; Mien Chi Hung; Peter A. Steck; Katherine A. Siminovitch; Gordon B. Mills

The PTEN/MMAC1/TEP (PTEN) tumor suppressor gene at 10q23.3 is mutated in multiple types of sporadic tumors including breast cancers and also in the germline of patients with the Cowdens breast cancer predisposition syndrome. The PTEN gene encodes a multifunctional phosphatase capable of dephosphorylating the same sites in membrane phosphatidylinositols phosphorylated by phosphatidylinositol 3′-kinase (PI3K). We demonstrate herein that loss of PTEN function in breast cancer cells results in an increase in basal levels of phosphorylation of multiple components of the P13K signaling cascade as well as an increase in duration of ligand-induced signaling through the P13K cascade. These alterations are reversed by wild-type but not phosphatase inactive PTEN. In the presence of high concentrations of serum, enforced expression of PTEN induces a predominant G1 arrest consistent with the capacity of PTEN to evoke increases in the expression of the p27Kip1 cyclin dependent kinase inhibitor. In the presence of low concentrations of serum, enforced PTEN expression results in a marked increase in cellular apoptosis, a finding which is consistent with the capacity of PTEN to alter the phosphorylation, and presumably function, of the AKT, BAD, p70S6 kinase and GSK3α apoptosis regulators. Under anchorage-independent conditions, PTEN also induces anoikis, a form of apoptosis that occurs when cells are dissociated from the extracellular matrix, which is enhanced in conjunction with low serum culture conditions. Together, these data suggest that PTEN effects on the PI3K signaling cascade are influenced by the cell stimulatory context, and that depending on the exposure to growth factors and other exogenous stimuli such as integrin ligation, PTEN can induce cell cycle arrest, apoptosis or anoikis in breast cancer cells.


Journal of Biological Chemistry | 2004

Mechanisms for Lysophosphatidic Acid-induced Cytokine Production in Ovarian Cancer Cells

Xianjun Fang; Shuangxing Yu; Robert C. Bast; Shuying Liu; Hong Ji Xu; Shi Xue Hu; Ruth LaPushin; Francois X. Claret; Bharat B. Aggarwal; Yiling Lu; Gordon B. Mills

A potential role for lysophosphatidic acid (LPA) in human oncogenesis was first suggested by the observation that LPA is present at elevated levels in ascites of ovarian cancer patients. In the current study, we demonstrated that LPA is a potent inducer of interleukin-6 (IL-6) and interleukin-8 (IL-8) production in ovarian cancer cells. Both IL-6 and IL-8 have been implicated in ovarian cancer progression. We characterized the IL-8 gene promoter to ascertain the transcriptional mechanism underlying LPA -induced expression of these cytokines. LPA stimulated the transcriptional activity of the IL-8 gene with little effect on IL-8 mRNA stability. The optimal response of the IL-8 gene promoter to LPA relied on binding sites for NF-κB and AP-1, two transcription factors that were strongly activated by LPA in ovarian cancer cell lines. Positive regulators of the NF-κB and AP-1 pathways synergistically activated the IL-8 gene promoter. Further, the effect of LPA on IL-6 and IL-8 generation is mediated by the Edg LPA receptors as enforced expression of LPA receptors restored LPA-induced IL-6 and IL-8 production in non-responsive cells and enhanced the sensitivity to LPA in responsive cell lines. The LPA2 receptor was identified to be the most efficient in linking LPA to IL-6 and IL-8 production although LPA1 and LPA3 were also capable of increasing the response to a certain degree. These studies elucidate the transcriptional mechanism and the Edg LPA receptors involved in LPA-induced IL-6 and IL-8 production and suggest potential strategies to restrain the expression of these cytokines in ovarian cancer.


FEBS Letters | 1995

Fas antigen signals proliferation of normal human diploid fibroblast and its mechanism is different from tumor necrosis factor receptor

Bharat B. Aggarwal; Sanjaya Singh; Ruth LaPushin; Klara Totpal

Recent cloning of the cDNA for Fas/Apo‐1 and its ligand has revealed that they belong to the tumor necrosis factor (TNF) receptor and TNF family, respectively, and play an important role in apoptosis (programmed cell death). Like TNF, antibodies against the Fas antigen (anti‐Fas) have been shown to be cytotoxic to Fas‐expressing cells. Whether Fas, like TNF receptor, also mediates proliferation of normal human diploid fibroblasts (HDF), is not known. In this study, we show that HDF expresses Fas antigen and the engagement of this antigen signals proliferation of these cells in a dose‐dependent manner. Unlike TNF receptor, however, Fas‐mediated proliferation of HDF could not be blocked by orthovanadate, a tyrosine phosphatase inhibitor. The difference in the signaling was further evident from our observation that TNF induced the expression of interleukin‐6 but anti‐Fas did not. Overall, our results demonstrate for the first time that besides cell killing, Fas also mediates proliferation of HDF and that its mechanism is different from that of TNF receptor.


Journal of Biological Chemistry | 2003

The role of cyclin-dependent kinase inhibitor p27Kip1 in anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition.

Xiao Feng Le; Francois X. Claret; Amy Lammayot; Ling Tian; Deepa Deshpande; Ruth LaPushin; Ana M. Tari; Robert C. Bast

Cyclin-dependent kinase (CDK) inhibitor p27Kip1 binds to the cyclin E·CDK2 complex and plays a major role in controlling cell cycle and cell growth. Our group and others have reported that anti-HER2 monoclonal antibodies exert inhibitory effects on HER2-overexpressing breast cancers through G1 cell cycle arrest associated with induction of p27Kip1 and reduction of CDK2. The role of p27Kip1 in anti-HER2 antibody-induced cell cycle arrest and growth inhibition is, however, still uncertain. Here we have provided several lines of evidence supporting a critical role for p27Kip1 in the anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. Induction of p27Kip1 and G1 growth arrest by anti-HER2 antibody, murine 4D5, or humanized trastuzumab (Herceptin®) are concentration-dependent, time-dependent, irreversible, and long-lasting. The magnitude of G1 cell cycle arrest induced by trastuzumab or 4D5 is well correlated with the level of p27Kip1 protein induced. Up-regulation of p27Kip1 and G1 growth arrest could no longer be removed with as little as 14 h of treatment with trastuzumab. Anti-HER2 antibody-induced p27Kip1 protein, G1 arrest, and growth inhibition persist at least 5 days after a single treatment. The magnitude of growth inhibition of breast cancer cells induced by anti-HER2 antibody closely parallels the level of p27Kip1 induced. Induced expression of exogenous p27Kip1 results in a p27Kip1 level-dependent G1 cell cycle arrest and growth inhibition similar to that obtained with anti-HER2 antibodies. Reducing p27Kip1 expression using p27Kip1 small interfering RNA blocks anti-HER2 antibody-induced p27Kip1 up-regulation and G1 arrest. Treatment with anti-HER2 antibody significantly increases the half-life of p27Kip1 protein. Inhibition of ubiquitin-proteasome pathway, but not inhibition of calpain and caspase activities, up-regulates p27Kip1 protein to a degree comparable with that obtained with anti-HER2 antibodies. We have further demonstrated that anti-HER2 antibody significantly decreases threonine phosphorylation of p27Kip1 protein at position 187 (Thr-187) and increases serine phosphorylation of p27Kip1 protein at position 10 (Ser-10). Expression of S10A and T187A mutant p27Kip1 protein increases the fraction of cells in G1 and reduces a further antibody-induced G1 arrest. Consequently, p27Kip1 plays an important role in the anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition through post-translational regulation. Regulation of the phosphorylation of p27Kip1 protein is one of the post-translational mechanisms by which anti-HER2 antibody upregulates the protein.


Blood | 2011

CCL3 (MIP-1α) plasma levels and the risk for disease progression in chronic lymphocytic leukemia.

Mariela Sivina; Elena Hartmann; Thomas J. Kipps; Laura Z. Rassenti; Diana Krupnik; Susan Lerner; Ruth LaPushin; Lianchun Xiao; Xuelin Huang; Lillian Werner; Donna Neuberg; Hagop M. Kantarjian; Susan O'Brien; William G. Wierda; Michael J. Keating; Andreas Rosenwald; Jan A. Burger

B-cell receptor (BCR) signaling has been inferred as an important mechanism for disease progression in chronic lymphocytic leukemia (CLL) and other B-cell malignancies. In response to BCR activation, CLL cells secrete the chemokine CCL3, which fosters interactions between CLL cells and the leukemia microenvironment. CCL3 secretion correlates with expression of the 70-kDa ζ-associated protein (ZAP-70) and responsiveness of the CLL clone to BCR stimulation. Here, we measured CCL3 plasma levels by enzyme-linked immunosorbent assay (ELISA) in 351 CLL patients and examined CCL3 levels for associations with established prognostic markers and time from diagnosis to initial therapy. We found that CCL3 plasma concentrations were strongly associated with established prognostic markers. In a Cox proportional hazards regression model, CCL3 as well as established prognostic markers (immunoglobulin heavy chain variable-region mutation status, CD38 or ZAP-70 cytogenetics, clinical stage) were significantly associated with time to treatment. Multivariable analysis revealed that CCL3 (hazard ratio [HR] = 2.33, P < .0001), advanced clinical stage (HR = 2.75, P = .0025), poor risk cytogenetics (del 17p, HR = 2.38; del11q, HR = 2.36, P = .001), and CD38 expression (HR = 1.43, P = .023) were independent prognostic markers. Collectively, CCL3 is a novel, robust, and independent prognostic marker in CLL that can easily and reliably be measured by ELISA. CCL3 therefore should become useful for risk assessment in patients with CLL.


Journal of Cellular Biochemistry | 2004

Lysophosphatidic acid production and action: Validated targets in cancer?

Makiko Umezu-Goto; Janos L. Tanyi; John P. Lahad; Shuying Liu; Shuangxing Yu; Ruth LaPushin; Yutaka Hasegawa; Yiling Lu; Rosanne Trost; Therese B. Bevers; Eric Jonasch; Kenneth D. Aldape; Jinsong Liu; Robyn D. James; Colin G. Ferguson; Yong Xu; Glenn D. Prestwich; Gordon B. Mills

The completion of the human genome project, the evolution of transcriptional profiling and the emergence of proteomics have focused attention on these areas in the pathophysiology and therapy of cancer. The role of lysophospholipids as potential mediators in cancer pathophysiology, screening and management has taken a major leap forward with the recent cloning of several enzymes involved in the metabolism of lysophospholipids. Lysophospholipids, although small molecules, contain a high “informational” content. Differences include the nature of the phosphate head group, the regiochemistry of the fatty acyl chain on the glyceryl backbone, the presence of ether versus ester linkages to the backbone, and the length and saturation of the fatty acyl or alkyl chain. This informational content is sufficient to result in a marked structure function activity relationship at their cognate receptors. Thus the emerging discipline of “functional lipidomics” is likely to prove as important as genomics and proteomics in terms of early diagnosis, prognosis, and therapy. Lysophospholipid levels are elevated in vivo in a number of pathophysiological states including ascitic fluid from ovarian cancer patients indicating a role in the pathophysiology of this devastating disease. Although controversial, levels of specific lysophospholipids may be altered in the blood of cancer patients providing a potential mechanism for early diagnosis. Several of the enzymes involved in the metabolism of lysophospholipids are aberrant in ovarian and other cancers. Further, the enzymes are active in the interstitial space, rendering them readily accessible to the effects of inhibitors including antibodies, proteins, and small molecules. In support of a role for lysophospholipids in the pathophysiology of cancer, expression of receptors for lysophospholipids is also aberrant in cancer cells from multiple different lineages. All of the cell surface receptors for lysophospholipids belong to the G protein coupled receptor family. As over 40% of all drugs in current use target this family of receptors, lysophospholipid receptors are highly “druggable.” Indeed, a number of highly specific agonists and antagonists of lysophospholipid receptors have been identified. A number are in preclinical evaluation as therapeutics. We look forward to the next several years when the role of lysophospholipids in physiology and the pathophysiology and management of cancer and other diseases are fully elucidated.


Cancer treatment and research | 2002

Critical Role of Lysophospholipids in the Pathophysiology, Diagnosis, and Management of Ovarian Cancer

Gordon B. Mills; Astrid Eder; Xianjun Fang; Yutaka Hasegawa; Muling Mao; Yiling Lu; Janos L. Tanyi; Fazal H. Tabassam; Jon R. Wiener; Ruth LaPushin; Shiangxing Yu; Jeff A. Parrott; Timothy R. Compton; Walter Tribley; David A. Fishman; M. Sharon Stack; Douglas Gaudette; Robert B. Jaffe; Tatsuro Furui; Junken Aoki; James R. Erickson

Lysophosphatidic acid (LPA), the simplest of all phospholipids, exhibits pleiomorphic functions in multiple cell lineages. The effects of LPA appear to be mediated by binding of LPA to specific members of the endothelial differentiation gene (Edg) family of G protein-coupled receptors (GPCR). Edg 2, Edg4, and Edg7 are high affinity receptors for LPA, and Edg1 may be a low affinity receptor for LPA. PSP24 has been shown to be responsive to LPA in Xenopus oocytes, however, its role in mammalian cells is unclear. The specific biochemical events initiated by the different Edg receptors, as well as the biological outcomes of activation of the individual receptors, are only beginning to be determined. LPA levels are consistently elevated in the plasma and ascites of ovarian cancer patients, but not in most other epithelial tumors, with the exception of cervix and endometrium, suggesting that LPA may be of particular importance in the pathophysiology of ovarian cancer. In support of this concept, ovarian cancer cells constitutively and inducibly produce high levels of LPA and demonstrate markedly different responses to LPA than normal ovarian surface epithelium. Edg4 and Edg7 levels are consistently increased in malignant ovarian epithelial cells contributing to the aberrant response of ovarian cancer cells to LPA. Edg2 may represent a negative regulatory LPA receptor inducing apoptosis in ovarian cancer cells. Thus, increased levels of LPA, altered receptor expression and altered responses to LPA may contribute to the initiation, progression or outcome of ovarian cancer. Over 40% of known drugs target GPCR, making LPA receptors attractive targets for molecular therapeutics. Indeed, using the structure-function relationship of LPA in model systems, we have identified selective Edg2 anatgonists, as well as Edg4 and Edg7 agonists. These lead compounds are being assessed in preclinical model systems. Understanding the mechanisms regulating LPA production, metabolism and function could lead to improved methods for early detection and to new targets for therapy in ovarian cancer.


Journal of Biological Chemistry | 2003

Evidence That Phosphatidylinositol 3-Kinase- and Mitogen-activated Protein Kinase Kinase-4/c-Jun NH2-terminal Kinase-dependent Pathways Cooperate to Maintain Lung Cancer Cell Survival

Ho-Young Lee; Harish Srinivas; Dianren Xia; Yiling Lu; Robert Superty; Ruth LaPushin; Candelaria Gomez-Manzano; Annamaria Gal; Garrett L. Walsh; Thomas Force; Kohjiro Ueki; Gordon B. Mills; Jonathan M. Kurie

Cancer cells in which the PTEN lipid phosphatase gene is deleted have constitutively activated phosphatidylinositol 3-kinase (PI3K)-dependent signaling and require activation of this pathway for survival. In non-small cell lung cancer (NSCLC) cells, PI3K-dependent signaling is typically activated through mechanisms other than PTEN gene loss. The role of PI3K in the survival of cancer cells that express wild-type PTEN has not been defined. Here we provide evidence that H1299 NSCLC cells, which express wild-type PTEN, underwent proliferative arrest following treatment with an inhibitor of all isoforms of class I PI3K catalytic activity (LY294002) or overexpression of the PTEN lipid phosphatase. In contrast, overexpression of a dominant-negative mutant of the p85α regulatory subunit of PI3K (Δp85) induced apoptosis. Whereas PTEN and Δ85 both inhibited activation of AKT/protein kinase B, only Δp85 inhibited c-Jun NH2-terminal kinase (JNK) activity. Cotransfection of the constitutively active mutant Rac-1 (Val12), an upstream activator of JNK, abrogated Δp85-induced lung cancer cell death, whereas constitutively active mutant mitogen-activated protein kinase kinase (MKK)-1 (R4F) did not. Furthermore, LY294002 induced apoptosis of MKK4-null but not wild-type mouse embryo fibroblasts. Therefore, we propose that, in the setting of wild-type PTEN, PI3K- and MKK4/JNK-dependent pathways cooperate to maintain cell survival.


Journal of Biological Chemistry | 2004

Glycogen Synthase Kinase 3β Is a Negative Regulator of Growth Factor-induced Activation of the c-Jun N-terminal Kinase

Shuying Liu; Shuangxing Yu; Yutaka Hasegawa; Ruth LaPushin; Hong Ji Xu; James R. Woodgett; Gordon B. Mills; Xianjun Fang

The c-Jun N-terminal kinase (JNK)/stress activated protein kinase is preferentially activated by stress stimuli. Growth factors, particularly ligands for G protein-coupled receptors, usually induce only modest JNK activation, although they may trigger marked activation of the related extracellular signal-regulated kinase. In the present study, we demonstrated that homozygous disruption of glycogen synthase kinase 3β (GSK-3β) dramatically sensitized mouse embryonic fibroblasts (MEFs) to JNK activation induced by lysophosphatidic acid (LPA) and sphingosine-1-phosphate, two prototype ligands for G protein-coupled receptors. To a lesser degree, a lack of GSK-3β also potentiated JNK activation in response to epidermal growth factor. In contrast, the absence of GSK-3β decreased UV light-induced JNK activation. The increased JNK activation induced by LPA in GSK-3β null MEFs was insufficient to trigger apoptotic cell death or growth inhibition. Instead, the increased JNK activation observed in GSK-3β–/– MEFs was associated with an increased proliferative response to LPA, which was reduced by the inhibition of JNK. Ectopic expression of GSK-3β in GSK-3β-negative MEFs restrained LPA-triggered JNK phosphorylation and induced a concomitant decrease in the mitogenic response to LPA compatible with GSK-3β through the inhibition of JNK activation, thus limiting LPA-induced cell proliferation. Mutation analysis indicated that GSK-3β kinase activity was required for GSK-3β to optimally inhibit LPA-stimulated JNK activation. Thus GSK-3β serves as a physiological switch to specifically repress JNK activation in response to LPA, sphingosine-1-phosphate, or the epidermal growth factor. These results reveal a novel role for GSK-3β in signal transduction and cellular responses to growth factors.


Leukemia | 2011

HLA homozygosity and haplotype bias among patients with chronic lymphocytic leukemia: implications for disease control by physiological immune surveillance

Nina Shah; William K. Decker; Ruth LaPushin; Dongxia Xing; Simon N. Robinson; Hui Yang; Simrit Parmar; Shawndeep Tung; Stephen J. O'Brien; Marcelo Fernandez-Vina; E. Shpall; William G. Wierda

HLA homozygosity and haplotype bias among patients with chronic lymphocytic leukemia: implications for disease control by physiological immune surveillance

Collaboration


Dive into the Ruth LaPushin's collaboration.

Top Co-Authors

Avatar

Gordon B. Mills

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yiling Lu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Bharat B. Aggarwal

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

William G. Wierda

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xianjun Fang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Janos L. Tanyi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Klara Totpal

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael J. Keating

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yutaka Hasegawa

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Robert C. Bast

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge