Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruth M. Arkell is active.

Publication


Featured researches published by Ruth M. Arkell.


Nature Genetics | 2000

A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse.

Patrick M. Nolan; Jo Peters; Mark Strivens; Derek Rogers; Jim J. Hagan; Nigel K. Spurr; Ian C. Gray; Lucie Vizor; Debra Brooker; Elaine Whitehill; Rebecca Washbourne; Tertius Hough; Simon Greenaway; Mazda Hewitt; Xinhong Liu; Stefan L. McCormack; Karen Pickford; Rachael Selley; Christine A. Wells; Zuzanna Tymowska-Lalanne; Phil Roby; Peter H. Glenister; Claire E. Thornton; Caroline Thaung; Julie-Anne Stevenson; Ruth M. Arkell; Philomena Mburu; Rachel E. Hardisty; Amy E. Kiernan; Alexandra Erven

As the human genome project approaches completion, the challenge for mammalian geneticists is to develop approaches for the systematic determination of mammalian gene function. Mouse mutagenesis will be a key element of studies of gene function. Phenotype-driven approaches using the chemical mutagen ethylnitrosourea (ENU) represent a potentially efficient route for the generation of large numbers of mutant mice that can be screened for novel phenotypes. The advantage of this approach is that, in assessing gene function, no a priori assumptions are made about the genes involved in any pathway. Phenotype-driven mutagenesis is thus an effective method for the identification of novel genes and pathways. We have undertaken a genome-wide, phenotype-driven screen for dominant mutations in the mouse. We generated and screened over 26,000 mice, and recovered some 500 new mouse mutants. Our work, along with the programme reported in the accompanying paper, has led to a substantial increase in the mouse mutant resource and represents a first step towards systematic studies of gene function in mammalian genetics.


Current Biology | 2003

Mutation of Celsr1 Disrupts Planar Polarity of Inner Ear Hair Cells and Causes Severe Neural Tube Defects in the Mouse

John A. Curtin; Elizabeth Quint; Vicky Tsipouri; Ruth M. Arkell; Bruce Cattanach; Andrew J. Copp; Deborah J. Henderson; Nigel K. Spurr; Philip Stanier; Elizabeth M. C. Fisher; Patrick M. Nolan; Karen P. Steel; Steve D.M. Brown; Ian C. Gray; Jennifer N. Murdoch

We identified two novel mouse mutants with abnormal head-shaking behavior and neural tube defects during the course of independent ENU mutagenesis experiments. The heterozygous and homozygous mutants exhibit defects in the orientation of sensory hair cells in the organ of Corti, indicating a defect in planar cell polarity. The homozygous mutants exhibit severe neural tube defects as a result of failure to initiate neural tube closure. We show that these mutants, spin cycle and crash, carry independent missense mutations within the coding region of Celsr1, encoding a large protocadherin molecule [1]. Celsr1 is one of three mammalian homologs of Drosophila flamingo/starry night, which is essential for the planar cell polarity pathway in Drosophila together with frizzled, dishevelled, prickle, strabismus/van gogh, and rhoA. The identification of mouse mutants of Celsr1 provides the first evidence for the function of the Celsr family in planar cell polarity in mammals and further supports the involvement of a planar cell polarity pathway in vertebrate neurulation.


Nature | 2001

Induction of the mammalian node requires Arkadia function in the extraembryonic lineages

Vasso Episkopou; Ruth M. Arkell; Paula M. Timmons; James Walsh; Rebecca L. Andrew; Daniel Swan

The early mammalian embryo is patterned by signals emanating from extraembryonic and embryonic signalling centres, most notably the anterior visceral endoderm (AVE) and the node, respectively. The AVE is responsible for anterior development, whereas further axis specification depends on the node, the equivalent of Spemanns organizer. Formation of the node, at the anterior primitive streak, depends on expression of the transcription factor HNF3β (ref. 4). However, both the source and the nature of the signals responsible for inducing the node have been unknown. Here we describe a recessive lethal mutation, arkadia, generated using gene-trap mutagenesis. Mutant embryos establish an AVE but fail to maintain anterior embryonic structures and lack a node. The mutation has disrupted the Arkadia gene, which encodes a putative intracellular protein containing a RING domain. Arkadia is essential for HNF3β expression in the anterior primitive streak. Analysis with chimaeras, however, shows that Arkadia functions within extraembryonic tissues, revealing that these are required to induce the node. Furthermore, our experiments show that Arkadia interacts genetically with the transforming growth factor (TGF)β-like factor Nodal, implying that Nodal mediates the function of Arkadia in node induction.


Human Molecular Genetics | 2008

Zic2-associated holoprosencephaly is caused by a transient defect in the organizer region during gastrulation

Nicholas Warr; Nicola Powles-Glover; Anna Chappell; Joan Robson; Dominic P. Norris; Ruth M. Arkell

The putative transcription factor ZIC2 is associated with a defect of forebrain development, known as Holoprosencephaly (HPE), in humans and mouse, yet the mechanism by which aberrant ZIC2 function causes classical HPE is unexplained. The zinc finger domain of all mammalian Zic genes is highly homologous with that of the Gli genes, which are transcriptional mediators of Shh signalling. Mutations in Shh and many other Hh pathway members cause HPE and it has been proposed that Zic2 acts within the Shh pathway to cause HPE. We have investigated the embryological cause of Zic2-associated HPE and the relationship between Zic2 and the Shh pathway using mouse genetics. We show that Zic2 does not interact with Shh to produce HPE. Moreover, molecular defects that are able to account for the HPE phenotype are present in Zic2 mutants before the onset of Shh signalling. Mutation of Zic2 causes HPE via a transient defect in the function of the organizer region at mid-gastrulation which causes an arrest in the development of the prechordal plate (PCP), a structure required for forebrain midline morphogenesis. The analysis provides genetic evidence that Zic2 functions during organizer formation and that the PCP develops via a multi-step process.


Journal of Investigative Dermatology | 2009

Flightless I Regulates Hemidesmosome Formation and Integrin-Mediated Cellular Adhesion and Migration during Wound Repair

Zlatko Kopecki; Ruth M. Arkell; Barry C. Powell

Flightless I (Flii), a highly conserved member of the gelsolin family of actin-remodelling proteins associates with actin structures and is involved in cellular motility and adhesion. Our previous studies have shown that Flii is an important negative regulator of wound repair. Here, we show that Flii affects hemidesmosome formation and integrin-mediated keratinocyte adhesion and migration. Impaired hemidesmosome formation and sparse arrangements of keratin cytoskeleton tonofilaments and actin cytoskeleton anchoring fibrils were observed in Flii(Tg/+) and Flii(Tg/Tg) mice with their skin being significantly more fragile than Flii(+/-) and WT mice. Flii(+/-) primary keratinocytes showed increased adhesion on laminin and collagen I than WT and Flii(Tg/Tg) primary keratinocytes. Decreased expression of CD151 and laminin-binding integrins alpha3, beta1, alpha6 and beta4 were observed in Flii overexpressing wounds, which could contribute to the impaired wound re-epithelialization observed in these mice. Flii interacts with proteins directly linked to the cytoplasmic domain of integrin receptors suggesting that it may be a mechanical link between ligand-bound integrin receptors and the actin cytoskeleton driving adhesion-signaling pathways. Therefore Flii may regulate wound repair through its effect on hemidesmosome formation and integrin-mediated cellular adhesion and migration.


Cellular and Molecular Life Sciences | 2013

The ZIC gene family encodes multi-functional proteins essential for patterning and morphogenesis

Rob Houtmeyers; Jacob Souopgui; Sabine Tejpar; Ruth M. Arkell

The zinc finger of the cerebellum gene (ZIC) discovered in Drosophila melanogaster (odd-paired) has five homologs in Xenopus, chicken, mice, and humans, and seven in zebrafish. This pattern of gene copy expansion is accompanied by a divergence in gene and protein structure, suggesting that Zic family members share some, but not all, functions. ZIC genes are implicated in neuroectodermal development and neural crest cell induction. All share conserved regions encoding zinc finger domains, however their heterogeneity and specification remain unexplained. In this review, the evolution, structure, and expression patterns of the ZIC homologs are described; specific functions attributable to individual family members are supported. A review of data from functional studies in Xenopus and murine models suggest that ZIC genes encode multifunctional proteins operating in a context-specific manner to drive critical events during embryogenesis. The identification of ZIC mutations in congenital syndromes highlights the relevance of these genes in human development.


Diabetes | 2008

Role of the Transcription Factor Sox4 in Insulin Secretion and Impaired Glucose Tolerance

Michelle Goldsworthy; Alison Hugill; Helen Freeman; Emma Horner; Kenju Shimomura; Debora Bogani; Guido Pieles; Vesna Mijat; Ruth M. Arkell; Shoumo Bhattacharya; Frances M. Ashcroft; Roger D. Cox

OBJECTIVES— To identify, map, clone, and functionally validate a novel mouse model for impaired glucose tolerance and insulin secretion. RESEARCH DESIGN AND METHODS— Haploinsufficiency of the insulin receptor and associated mild insulin resistance has been used to sensitize an N-ethyl-N-nitrosourea (ENU) screen to identify novel mutations resulting in impaired glucose tolerance and diabetes. The new impaired glucose tolerance 4 (IGT4) model was selected using an intraperitoneal glucose tolerance test and inheritance of the phenotype confirmed by generation of backcross progeny. Segregation of the phenotype was correlated with genotype information to map the location of the gene and candidates sequenced for mutations. The function of the SRY-related high mobility group (HMG)-box 4 (Sox4) gene in insulin secretion was tested using another ENU allele and by small interfering RNA silencing in insulinoma cells. RESULTS— We describe two allelic autosomal dominant mutations in the highly conserved HMG box of the transcription factor Sox4. Previously associated with pancreas development, Sox4 mutations in the adult mouse result in an insulin secretory defect, which exhibits impaired glucose tolerance in association with insulin receptor+/−–induced insulin resistance. Elimination of the Sox4 transcript in INS1 and Min6 cells resulted in the abolition of glucose-stimulated insulin release similar to that observed for silencing of the key metabolic enzyme glucokinase. Intracellular calcium measurements in treated cells indicate that this defect lies downstream of the ATP-sensitive K+ channel (KATP channel) and calcium influx. CONCLUSIONS— IGT4 represents a novel digenic model of insulin resistance coupled with an insulin secretory defect. The Sox4 gene has a role in insulin secretion in the adult β-cell downstream of the KATP channel.


Development | 2011

Stringent requirement of a proper level of canonical WNT signalling activity for head formation in mouse embryo

Nicolas Fossat; Vanessa Jones; Poh-Lynn Khoo; Debora Bogani; Andrea Hardy; Kirsten A. Steiner; Mahua Mukhopadhyay; Heiner Westphal; Patrick M. Nolan; Ruth M. Arkell; Patrick P.L. Tam

In mouse embryos, loss of Dickkopf-1 (DKK1) activity is associated with an ectopic activation of WNT signalling responses in the precursors of the craniofacial structures and leads to a complete truncation of the head at early organogenesis. Here, we show that ENU-induced mutations of genes coding for two WNT canonical pathway factors, the co-receptor LRP6 and the transcriptional co-activator β-catenin, also elicit an ectopic signalling response and result in loss of the rostral tissues of the forebrain. Compound mutant embryos harbouring combinations of mutant alleles of Lrp6, Ctnnb1 and Dkk1 recapitulate the partial to complete head truncation phenotype of individual homozygous mutants. The demonstration of a synergistic interaction of Dkk1, Lrp6 and Ctnnb1 provides compelling evidence supporting the concepts that (1) stringent regulation of the level of canonical WNT signalling is necessary for head formation, (2) activity of the canonical pathway is sufficient to account for the phenotypic effects of mutations in three different components of the signal cascade and (3) rostral parts of the brain and the head are differentially more sensitive to canonical WNT signalling and their development is contingent on negative modulation of WNT signalling activity.


Mechanisms of Development | 2001

Expression of a novel mammalian epidermal growth factor-related gene during mouse neural development

Sean M. Grimmond; Rachel Larder; Nick Van Hateren; Pam Siggers; Sue Morse; Terry Hacker; Ruth M. Arkell; Andy Greenfield

We have recently reported the preliminary characterisation of a novel EGF-related gene, Scube1 (signal peptide-CUB domain-EGF-related, gene 1), that is expressed prominently in the developing gonad, nervous system, somites, surface ectoderm and limb buds of the mouse. Here we describe the expression pattern of a closely related gene, Scube2 (also known as Cegp1), which maps to the distal region of mouse chromosome 7. Scube2 transcription is restricted to the embryonic neurectoderm but is also detectable in the adult heart, lung and testis.


Open Biology | 2012

Initiating head development in mouse embryos: integrating signalling and transcriptional activity

Ruth M. Arkell; Patrick P.L. Tam

The generation of an embryonic body plan is the outcome of inductive interactions between the progenitor tissues that underpin their specification, regionalization and morphogenesis. The intercellular signalling activity driving these processes is deployed in a time- and site-specific manner, and the signal strength must be precisely controlled. Receptor and ligand functions are modulated by secreted antagonists to impose a dynamic pattern of globally controlled and locally graded signals onto the tissues of early post-implantation mouse embryo. In response to the WNT, Nodal and Bone Morphogenetic Protein (BMP) signalling cascades, the embryo acquires its body plan, which manifests as differences in the developmental fate of cells located at different positions in the anterior–posterior body axis. The initial formation of the anterior (head) structures in the mouse embryo is critically dependent on the morphogenetic activity emanating from two signalling centres that are juxtaposed with the progenitor tissues of the head. A common property of these centres is that they are the source of antagonistic factors and the hub of transcriptional activities that negatively modulate the function of WNT, Nodal and BMP signalling cascades. These events generate the scaffold of the embryonic head by the early-somite stage of development. Beyond this, additional tissue interactions continue to support the growth, regionalization, differentiation and morphogenesis required for the elaboration of the structure recognizable as the embryonic head.

Collaboration


Dive into the Ruth M. Arkell's collaboration.

Top Co-Authors

Avatar

Kristen S. Barratt

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debora Bogani

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Pam Siggers

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole Thomsen

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Radiya G. Ali

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge