Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruth Musgrave is active.

Publication


Featured researches published by Ruth Musgrave.


Nature | 2015

The formation and fate of internal waves in the South China Sea

Matthew H. Alford; Thomas Peacock; Jennifer A. MacKinnon; Jonathan D. Nash; Maarten C. Buijsman; Luca R. Centuroni; Shenn-Yu Chao; Ming-Huei Chang; David M. Farmer; Oliver B. Fringer; Ke-Hsien Fu; Patrick C. Gallacher; Hans C. Graber; Karl R. Helfrich; Steven M. Jachec; Christopher R. Jackson; Jody M. Klymak; Dong S. Ko; Sen Jan; T. M. Shaun Johnston; Sonya Legg; I-Huan Lee; Ren-Chieh Lien; Matthieu J. Mercier; James N. Moum; Ruth Musgrave; Jae-Hun Park; Andy Pickering; Robert Pinkel; Luc Rainville

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans’ most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.


Journal of Physical Oceanography | 2011

Energy Flux and Dissipation in Luzon Strait: Two Tales of Two Ridges

Matthew H. Alford; Jennifer A. MacKinnon; Jonathan D. Nash; Harper L. Simmons; Andy Pickering; Jody M. Klymak; Robert Pinkel; Oliver M. T. Sun; Luc Rainville; Ruth Musgrave; Tamara Beitzel; Ke-Hsien Fu; Chung-Wei Lu

AbstractInternal tide generation, propagation, and dissipation are investigated in Luzon Strait, a system of two quasi-parallel ridges situated between Taiwan and the Philippines. Two profiling moorings deployed for about 20 days and a set of nineteen 36-h lowered ADCP–CTD time series stations allowed separate measurement of diurnal and semidiurnal internal tide signals. Measurements were concentrated on a northern line, where the ridge spacing was approximately equal to the mode-1 wavelength for semidiurnal motions, and a southern line, where the spacing was approximately two-thirds that. The authors contrast the two sites to emphasize the potential importance of resonance between generation sites. Throughout Luzon Strait, baroclinic energy, energy fluxes, and turbulent dissipation were some of the strongest ever measured. Peak-to-peak baroclinic velocity and vertical displacements often exceeded 2 m s−1 and 300 m, respectively. Energy fluxes exceeding 60 kW m−1 were measured at spring tide at the wester...


Geophysical Research Letters | 2015

Rossby waves, extreme fronts, and wildfires in southeastern Australia

Michael J. Reeder; Thomas Spengler; Ruth Musgrave

The most catastrophic fires in recent history in southern Australia have been associated with extreme cold fronts. Here an extreme cold front is defined as one for which the maximum temperature at 2 m is at least 17°C lower on the day following the front. An anticyclone, which precedes the cold front, directs very dry northerlies or northwesterlies from the interior of the continent across the region. The passage of the cold front is followed by strong southerlies or southwesterlies. European Centre for Medium-Range Weather Forecasts ERA-Interim Reanalyses show that this regional synoptic pattern common to all strong cold fronts, and hence severe fire conditions, is a consequence of propagating Rossby waves, which grow to large amplitude and eventually irreversibly overturn. The process of overturning produces the low-level anticyclone and dry conditions over southern Australia, while simultaneously producing an upper level trough and often precipitation in northeastern Australia.


Bulletin of the American Meteorological Society | 2017

Climate Process Team on Internal Wave-Driven Ocean Mixing

Jennifer A. MacKinnon; Zhongxiang Zhao; Caitlin B. Whalen; Amy F. Waterhouse; David S. Trossman; Oliver M. T. Sun; Louis C. St. Laurent; Harper L. Simmons; Kurt L. Polzin; Robert Pinkel; Andy Pickering; Nancy J. Norton; Jonathan D. Nash; Ruth Musgrave; Lynne M. Merchant; Angélique Mélet; Benjamin D. Mater; Sonya Legg; William G. Large; Eric Kunze; Jody M. Klymak; Markus Jochum; Steven R. Jayne; Robert Hallberg; Stephen M. Griffies; Stephen Diggs; Gokhan Danabasoglu; Eric P. Chassignet; Maarten C. Buijsman; Frank O. Bryan

Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatio-temporal patterns of mixing are largely driven by the geography of generation, propagation and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last five years and under the auspices of US CLIVAR, a NSF- and NOAA-supported Climate Process Team has been engaged in developing, implementing and testing dynamics-based parameterizations for internal-wave driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here we review recent progress, describe the tools developed, and discuss future directions.


Journal of Physical Oceanography | 2017

Internal tide convergence and mixing in a submarine canyon

Amy F. Waterhouse; Jennifer A. MacKinnon; Ruth Musgrave; Samuel M. Kelly; Andy Pickering; Jonathan D. Nash

AbstractObservations from Eel Canyon, located on the north coast of California, show that elevated turbulence in the full water column arises from the convergence of remotely generated internal wave energy. The incoming semidiurnal and bottom-trapped diurnal internal tides generate complex interference patterns. The semidiurnal internal tide sets up a partly standing wave within the canyon due to reflection at the canyon head, dissipating all of its energy within the canyon. Dissipation in the near bottom is associated with the diurnal trapped tide, while midwater isopycnal shear and strain is associated with the semidiurnal tide. Dissipation is elevated up to 600 m off the bottom, in contrast to observations over the flat continental shelf where dissipation occurs closer to the topography. Slope canyons are sinks for internal wave energy and may have important influences on the global distribution of tidally driven mixing.


Journal of Physical Oceanography | 2016

Tidally Driven Processes Leading to Near-Field Turbulence in a Channel at the Crest of the Mendocino Escarpment

Ruth Musgrave; Jennifer A. MacKinnon; Robert Pinkel; Amy F. Waterhouse; Jonathan D. Nash

AbstractIn situ observations of tidally driven turbulence were obtained in a small channel that transects the crest of the Mendocino Ridge, a site of mixed (diurnal and semidiurnal) tides. Diurnal tides are subinertial at this latitude, and once per day a trapped tide leads to large flows through the channel giving rise to tidal excursion lengths comparable to the width of the ridge crest. During these times, energetic turbulence is observed in the channel, with overturns spanning almost half of the full water depth. A high-resolution, nonhydrostatic, 2.5-dimensional simulation is used to interpret the observations in terms of the advection of a breaking tidal lee wave that extends from the ridge crest to the surface and the subsequent development of a hydraulic jump on the flanks of the ridge. Modeled dissipation rates show that turbulence is strongest on the flanks of the ridge and that local dissipation accounts for 28% of the energy converted from the barotropic tide into baroclinic motion.


Journal of Physical Oceanography | 2017

The Influence of Subinertial Internal Tides on Near-Topographic Turbulence at the Mendocino Ridge: Observations and Modeling

Ruth Musgrave; Jennifer A. MacKinnon; Robert Pinkel; Amy F. Waterhouse; Jonathan D. Nash; Samuel M. Kelly

AbstractShipboard measurements of velocity and density were obtained in the vicinity of a small channel in the Mendocino Ridge, where flows were predominantly tidal. Measured daily inequalities in transport are much greater than those predicted by a barotropic tide model, with the strongest transport associated with full depth flows and the weakest with shallow, surface-confined flows. A regional numerical model of the area finds that the subinertial K1 (diurnal) tidal constituent generates topographically trapped waves that propagate anticyclonically around the ridge and are associated with enhanced near-topographic K1 transports. The interaction of the baroclinic trapped waves with the surface tide produces a tidal flow whose northward transports alternate between being surface confined and full depth. Full depth flows are associated with the generation of a large-amplitude tidal lee wave on the northward face of the ridge, while surface-confined flows are largely nonturbulent. The regional model demons...


Nature | 2015

Corrigendum: The formation and fate of internal waves in the South China Sea

Matthew H. Alford; Thomas Peacock; Jennifer A. MacKinnon; Jonathan D. Nash; Maarten C. Buijsman; Luca Centurioni; Shenn-Yu Chao; Ming-Huei Chang; David M. Farmer; Oliver B. Fringer; Ke-Hsien Fu; Patrick C. Gallacher; Hans C. Graber; Karl R. Helfrich; Steven M. Jachec; Christopher R. Jackson; Jody M. Klymak; Dong S. Ko; Sen Jan; T. M. Shaun Johnston; Sonya Legg; I-Huan Lee; Ren-Chieh Lien; Matthieu Mercier; James N. Moum; Ruth Musgrave; Jae-Hun Park; Andrew Pickering; Robert Pinkel; Luc Rainville

This corrects the article DOI: 10.1038/nature14399


Oceanography | 2012

Are Any Coastal Internal Tides Predictable

Jonathan D. Nash; Emily L. Shroyer; Samuel M. Kelly; Mark Inall; Timothy F. Duda; Murray D. Levine; Nicole L. Jones; Ruth Musgrave


Journal of Fluid Mechanics | 2016

Stratified tidal flow over a tall ridge above and below the turning latitude

Ruth Musgrave; Robert Pinkel; Jennifer A. MacKinnon; Matthew R. Mazloff; W. R. Young

Collaboration


Dive into the Ruth Musgrave's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Pinkel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy Pickering

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc Rainville

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Maarten C. Buijsman

University of Southern Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge