Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruth R. Taylor is active.

Publication


Featured researches published by Ruth R. Taylor.


Hearing Research | 2001

Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals.

Su Hua Sha; Ruth R. Taylor; Andrew Forge; Jochen Schacht

The base of the cochlea is more vulnerable to trauma than the apex as seen in the pattern of hair cell damage by cisplatin or aminoglycosides. The differential vulnerability is maintained in organotypic cultures exposed directly to these drugs, suggesting there may be an intrinsic difference in sensitivity to damage along the cochlear spiral. We therefore investigated the survival capacity of isolated outer hair cells and strips dissected from different turns of the guinea pig organ of Corti in short-term culture. Cells were stained with fluorescent indicators of viable or dead cells, calcein-AM and ethidium homodimer. After 5 h at room temperature, up to 90% of outer hair cells from the apex survived, but less than 30% from the base. In contrast, basal inner hair cells remained viable, and supporting cells survived for at least 20 h. The difference in survival capacity between basal and apical outer hair cells coincided with a significantly lower level of the antioxidant glutathione in basal outer hair cells compared with apical outer hair cells. This suggested that basal outer hair cells may be more vulnerable to free-radical damage than apical outer hair cells. The survival of basal outer hair cells was significantly improved by addition of the radical scavengers n-acetyl cysteine, p-phenylenediamine, glutathione, mannitol or salicylate. The protection by antioxidants implies that the accelerated death of basal outer hair cells is due to free-radical damage. The results support an intrinsic susceptibility to free radicals that differs among cochlear cell populations. This differential provides a rational explanation for base-to-apex gradients observed in various forms of cochlear pathology.


Jaro-journal of The Association for Research in Otolaryngology | 2008

Sox2 and Jagged1 Expression in Normal and Drug-Damaged Adult Mouse Inner Ear

Elizabeth C. Oesterle; Sean Campbell; Ruth R. Taylor; Andrew Forge; Clifford R. Hume

Inner ear hair cells detect environmental signals associated with hearing, balance, and body orientation. In humans and other mammals, significant hair cell loss leads to irreversible hearing and balance deficits, whereas hair cell loss in nonmammalian vertebrates is repaired by the spontaneous generation of replacement hair cells. Research in mammalian hair cell regeneration is hampered by the lack of in vivo damage models for the adult mouse inner ear and the paucity of cell-type-specific markers for non-sensory cells within the sensory receptor epithelia. The present study delineates a protocol to drug damage the adult mouse auditory epithelium (organ of Corti) in situ and uses this protocol to investigate Sox2 and Jagged1 expression in damaged inner ear sensory epithelia. In other tissues, the transcription factor Sox2 and a ligand member of the Notch signaling pathway, Jagged1, are involved in regenerative processes. Both are involved in early inner ear development and are expressed in developing support cells, but little is known about their expressions in the adult. We describe a nonsurgical technique for inducing hair cell damage in adult mouse organ of Corti by a single high-dose injection of the aminoglycoside kanamycin followed by a single injection of the loop diuretic furosemide. This drug combination causes the rapid death of outer hair cells throughout the cochlea. Using immunocytochemical techniques, Sox2 is shown to be expressed specifically in support cells in normal adult mouse inner ear and is not affected by drug damage. Sox2 is absent from auditory hair cells, but is expressed in a subset of vestibular hair cells. Double-labeling experiments with Sox2 and calbindin suggest Sox2-positive hair cells are Type II. Jagged1 is also expressed in support cells in the adult ear and is not affected by drug damage. Sox2 and Jagged1 may be involved in the maintenance of support cells in adult mouse inner ear.


Open Biology | 2012

TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells

Kathryn Quick; Jing Zhao; Niels Eijkelkamp; John E. Linley; François Rugiero; James J. Cox; Ramin Raouf; Martine Gringhuis; Jane E. Sexton; Joel Abramowitz; Ruth R. Taylor; Andy Forge; Jonathan Ashmore; Nerissa K. Kirkwood; Corné J. Kros; Guy P. Richardson; Marc Freichel; Veit Flockerzi; Lutz Birnbaumer; John N. Wood

Summary Transient receptor potential (TRP) channels TRPC3 and TRPC6 are expressed in both sensory neurons and cochlear hair cells. Deletion of TRPC3 or TRPC6 in mice caused no behavioural phenotype, although loss of TRPC3 caused a shift of rapidly adapting (RA) mechanosensitive currents to intermediate-adapting currents in dorsal root ganglion sensory neurons. Deletion of both TRPC3 and TRPC6 caused deficits in light touch and silenced half of small-diameter sensory neurons expressing mechanically activated RA currents. Double TRPC3/TRPC6 knock-out mice also showed hearing impairment, vestibular deficits and defective auditory brain stem responses to high-frequency sounds. Basal, but not apical, cochlear outer hair cells lost more than 75 per cent of their responses to mechanical stimulation. FM1-43-sensitive mechanically gated currents were induced when TRPC3 and TRPC6 were co-expressed in sensory neuron cell lines. TRPC3 and TRPC6 are thus required for the normal function of cells involved in touch and hearing, and are potential components of mechanotransducing complexes.


The Journal of Comparative Neurology | 2005

Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian.

Ruth R. Taylor; Andrew Forge

The capacity of urodele amphibians to regenerate a variety of body parts is providing insight into mechanisms of tissue regeneration in vertebrates. In this study the ability of the newt, Notophthalmus viridescens, to regenerate inner ear hair cells in vitro was examined. Intact otic capsules were maintained in organotypic culture. Incubation in 2 mM gentamicin for 48 hours resulted in ablation of all hair cells from the saccular maculae. Thus, any hair cell recovery was not due to repair of damaged hair cells. Immature hair cells were subsequently observed at ∼12 days posttreatment. Their number increased over the following 7–14 days to reach ∼30% of the normal number. Following incubation of damaged tissue with bromodeoxyuridine (BrdU), labeled nuclei were confined strictly within regions of hair cell loss, indicating that supporting cells entered S‐phase. Double labeling of tissue with two different hair cell markers and three different antibodies to BrdU in various combinations, however, all showed that the nuclei of cells that labeled with hair cell markers did not label for BrdU. This suggested that the new hair cells were not derived from those cells that had undergone mitosis. When mitosis was blocked with aphidicolin, new hair cells were still generated. The results suggest that direct phenotypic conversion of supporting cells into hair cells without an intervening mitotic event is a major mechanism of hair cell regeneration in the newt. A similar mechanism has been proposed for the hair cell recovery phenomenon observed in the vestibular organs of mammals. J. Comp. Neurol. 484:105–120, 2005.


PLOS ONE | 2012

Defining the Cellular Environment in the Organ of Corti following Extensive Hair Cell Loss: A Basis for Future Sensory Cell Replacement in the Cochlea

Ruth R. Taylor; Daniel J. Jagger; Andrew Forge

Background Following the loss of hair cells from the mammalian cochlea, the sensory epithelium repairs to close the lesions but no new hair cells arise and hearing impairment ensues. For any cell replacement strategy to be successful, the cellular environment of the injured tissue has to be able to nurture new hair cells. This study defines characteristics of the auditory sensory epithelium after hair cell loss. Methodology/Principal Findings Studies were conducted in C57BL/6 and CBA/Ca mice. Treatment with an aminoglycoside-diuretic combination produced loss of all outer hair cells within 48 hours in both strains. The subsequent progressive tissue re-organisation was examined using immunohistochemistry and electron microscopy. There was no evidence of significant de-differentiation of the specialised columnar supporting cells. Kir4.1 was down regulated but KCC4, GLAST, microtubule bundles, connexin expression patterns and pathways of intercellular communication were retained. The columnar supporting cells became covered with non-specialised cells migrating from the outermost region of the organ of Corti. Eventually non-specialised, flat cells replaced the columnar epithelium. Flat epithelium developed in distributed patches interrupting regions of columnar epithelium formed of differentiated supporting cells. Formation of the flat epithelium was initiated within a few weeks post-treatment in C57BL/6 mice but not for several months in CBA/Cas, suggesting genetic background influences the rate of re-organisation. Conclusions/Significance The lack of dedifferentiation amongst supporting cells and their replacement by cells from the outer side of the organ of Corti are factors that may need to be considered in any attempt to promote endogenous hair cell regeneration. The variability of the cellular environment along an individual cochlea arising from patch-like generation of flat epithelium, and the possible variability between individuals resulting from genetic influences on the rate at which remodelling occurs may pose challenges to devising the appropriate regenerative therapy for a deaf patient.


Nature Biotechnology | 2017

A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear

Lukas D. Landegger; Bifeng Pan; Charles Askew; Sarah J. Wassmer; Sarah Gluck; Alice Galvin; Ruth R. Taylor; Andrew Forge; Konstantina M. Stankovic; Jeffrey R. Holt; Luk H. Vandenberghe

Efforts to develop gene therapies for hearing loss have been hampered by the lack of safe, efficient, and clinically relevant delivery modalities. Here we demonstrate the safety and efficiency of Anc80L65, a rationally designed synthetic vector, for transgene delivery to the mouse cochlea. Ex vivo transduction of mouse organotypic explants identified Anc80L65 from a set of other adeno-associated virus (AAV) vectors as a potent vector for the cochlear cell targets. Round window membrane injection resulted in highly efficient transduction of inner and outer hair cells in mice, a substantial improvement over conventional AAV vectors. Anc80L65 round window injection was well tolerated, as indicated by sensory cell function, hearing and vestibular function, and immunologic parameters. The ability of Anc80L65 to target outer hair cells at high rates, a requirement for restoration of complex auditory function, may enable future gene therapies for hearing and balance disorders.


Human Molecular Genetics | 2015

Absence of plastin 1 causes abnormal maintenance of hair cell stereocilia and a moderate form of hearing loss in mice

Ruth R. Taylor; Anwen Bullen; Stuart L. Johnson; Eva-Maria Grimm-Günter; Francisco Rivero; Walter Marcotti; Andrew Forge; Nicolas Daudet

Hearing relies on the mechanosensory inner and outer hair cells (OHCs) of the organ of Corti, which convert mechanical deflections of their actin-rich stereociliary bundles into electrochemical signals. Several actin-associated proteins are essential for stereocilia formation and maintenance, and their absence leads to deafness. One of the most abundant actin-bundling proteins of stereocilia is plastin 1, but its function has never been directly assessed. Here, we found that plastin 1 knock-out (Pls1 KO) mice have a moderate and progressive form of hearing loss across all frequencies. Auditory hair cells developed normally in Pls1 KO, but in young adult animals, the stereocilia of inner hair cells were reduced in width and length. The stereocilia of OHCs were comparatively less affected; however, they also showed signs of degeneration in ageing mice. The hair bundle stiffness and the acquisition of the electrophysiological properties of hair cells were unaffected by the absence of plastin 1, except for a significant change in the adaptation properties, but not the size of the mechanoelectrical transducer currents. These results show that in contrast to other actin-bundling proteins such as espin, harmonin or Eps8, plastin 1 is dispensable for the initial formation of stereocilia. However, the progressive hearing loss and morphological defects of hair cells in adult Pls1 KO mice point at a specific role for plastin 1 in the preservation of adult stereocilia and optimal hearing. Hence, mutations in the human PLS1 gene may be associated with relatively mild and progressive forms of hearing loss.


Journal of Cell Science | 2013

Connexin30 mediated intercellular communication plays an essential role in epithelial repair in the cochlea.

Andrew Forge; Daniel J. Jagger; John J. Kelly; Ruth R. Taylor

Summary A role for connexin (Cx)30 in epithelial repair following injury was examined in the organ of Corti, the sensory epithelium of the cochlea. In this tissue, lesions caused by loss of the sensory hair cells are closed by the supporting cells that surround each one. Gap junctions in which Cx30 is the predominant connexin are large and numerous between supporting cells. In mice carrying a deletion in the gene (Gjb6) that encodes Cx30, the size and number of gap junction plaques, and the extent of dye transfer, between supporting cells was greatly reduced compared with normal animals. This corresponded with unique peculiarities of the lesion closure events during the progressive hair cell loss that occurs in these animals in comparison with other models of hair cell loss, whether acquired or as a result of a mutation. Only one, rather than all, of the supporting cells that contacted an individual dying hair closed the lesion, indicating disturbance of the co-ordination of cellular responses. The cell shape changes that the supporting cells normally undergo during repair of the organ of Corti did not occur. Also, there was disruption of the migratory activities that normally lead to the replacement of a columnar epithelium with a squamous-like one. These observations demonstrate a role for Cx30 and intercellular communication in regulating repair responses in an epithelial tissue.


PLOS ONE | 2013

Hearing loss in a mouse model of 22q11.2 deletion syndrome

Jennifer C. Fuchs; Fhatarah A. Zinnamon; Ruth R. Taylor; Sarah Ivins; Peter J. Scambler; Andrew Forge; Abigail S. Tucker; Jennifer F. Linden

22q11.2 Deletion Syndrome (22q11DS) arises from an interstitial chromosomal microdeletion encompassing at least 30 genes. This disorder is one of the most significant known cytogenetic risk factors for schizophrenia, and can also cause heart abnormalities, cognitive deficits, hearing difficulties, and a variety of other medical problems. The Df1/+ hemizygous knockout mouse, a model for human 22q11DS, recapitulates many of the deficits observed in the human syndrome including heart defects, impaired memory, and abnormal auditory sensorimotor gating. Here we show that Df1/+ mice, like human 22q11DS patients, have substantial rates of hearing loss arising from chronic middle ear infection. Auditory brainstem response (ABR) measurements revealed significant elevation of click-response thresholds in 48% of Df1/+ mice, often in only one ear. Anatomical and histological analysis of the middle ear demonstrated no gross structural abnormalities, but frequent signs of otitis media (OM, chronic inflammation of the middle ear), including excessive effusion and thickened mucosa. In mice for which both in vivo ABR thresholds and post mortem middle-ear histology were obtained, the severity of signs of OM correlated directly with the level of hearing impairment. These results suggest that abnormal auditory sensorimotor gating previously reported in mouse models of 22q11DS could arise from abnormalities in auditory processing. Furthermore, the findings indicate that Df1/+ mice are an excellent model for increased risk of OM in human 22q11DS patients. Given the frequently monaural nature of OM in Df1/+ mice, these animals could also be a powerful tool for investigating the interplay between genetic and environmental causes of OM.


Neurobiology of Aging | 2015

Characterizing human vestibular sensory epithelia for experimental studies: new hair bundles on old tissue and implications for therapeutic interventions in ageing

Ruth R. Taylor; Daniel J. Jagger; Shakeel R. Saeed; Patrick Axon; Neil Donnelly; James R. Tysome; David Moffatt; Richard Irving; Peter Monksfield; Chris Coulson; Simon Lloyd; Andrew Forge

Balance disequilibrium is a significant contributor to falls in the elderly. The most common cause of balance dysfunction is loss of sensory cells from the vestibular sensory epithelia of the inner ear. However, inaccessibility of inner ear tissue in humans severely restricts possibilities for experimental manipulation to develop therapies to ameliorate this loss. We provide a structural and functional analysis of human vestibular sensory epithelia harvested at trans-labyrinthine surgery. We demonstrate the viability of the tissue and labeling with specific markers of hair cell function and of ion homeostasis in the epithelium. Samples obtained from the oldest patients revealed a significant loss of hair cells across the tissue surface, but we found immature hair bundles present in epithelia harvested from patients >60 years of age. These results suggest that the environment of the human vestibular sensory epithelium could be responsive to stimulation of developmental pathways to enhance hair cell regeneration, as has been demonstrated successfully in the vestibular organs of adult mice.

Collaboration


Dive into the Ruth R. Taylor's collaboration.

Top Co-Authors

Avatar

Andrew Forge

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Ivins

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Brandon C. Cox

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jeffrey R. Holt

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge