Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruth S. Slack is active.

Publication


Featured researches published by Ruth S. Slack.


Journal of Cell Biology | 2002

Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death

Sean P. Cregan; Andre Fortin; Jason G. MacLaurin; Steven M. Callaghan; Francesco Cecconi; Seong Woon Yu; Ted M. Dawson; Valina L. Dawson; David S. Park; Guido Kroemer; Ruth S. Slack

Caspase-independent death mechanisms have been shown to execute apoptosis in many types of neuronal injury. P53 has been identified as a key regulator of neuronal cell death after acute injury such as DNA damage, ischemia, and excitotoxicity. Here, we demonstrate that p53 can induce neuronal cell death via a caspase-mediated process activated by apoptotic activating factor-1 (Apaf1) and via a delayed onset caspase-independent mechanism. In contrast to wild-type cells, Apaf1-deficient neurons exhibit delayed DNA fragmentation and only peripheral chromatin condensation. More importantly, we demonstrate that apoptosis-inducing factor (AIF) is an important factor involved in the regulation of this caspase-independent neuronal cell death. Immunofluorescence studies demonstrate that AIF is released from the mitochondria by a mechanism distinct from that of cytochrome-c in neurons undergoing p53-mediated cell death. The Bcl-2 family regulates this release of AIF and subsequent caspase-independent cell death. In addition, we show that enforced expression of AIF can induce neuronal cell death in a Bax- and caspase-independent manner. Microinjection of neutralizing antibodies against AIF significantly decreased injury-induced neuronal cell death in Apaf1-deficient neurons, indicating its importance in caspase-independent apoptosis. Taken together, our results suggest that AIF may be an important therapeutic target for the treatment of neuronal injury.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Caspase 3 activity is required for skeletal muscle differentiation

Pasan Fernando; John Kelly; Kim Balazsi; Ruth S. Slack; Lynn A. Megeney

The cellular alterations associated with skeletal muscle differentiation share a high degree of similarity with key phenotypic changes usually ascribed to apoptosis. For example, actin fiber disassembly/reorganization is a conserved feature of both apoptosis and differentiating myoblasts and the conserved muscle contractile protein, myosin light chain kinase, is required for the apoptotic feature of membrane blebbing. As such, these observations suggest that the induction of differentiation and apoptosis in the myogenic lineage may use overlapping cellular mechanisms. Here, we report that skeletal muscle differentiation depends on the activity of the key apoptotic protease, caspase 3. Peptide inhibition of caspase 3 activity or homologous deletion of caspase 3 leads to dramatic reduction in both myotube/myofiber formation and expression of muscle-specific proteins. Subsequently, we have identified Mammalian Sterile Twenty-like kinase as a crucial caspase 3 effector in this cellular process. Mammalian Sterile Twenty-like kinase is cleavage-activated by caspase 3, and restoration of this truncated kinase in caspase 3 null myoblasts restores the differentiation phenotype. Taken together, these results confirm a unique and unanticipated role for a caspase 3-mediated signal cascade in the promotion of myogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease.

Patrice D. Smith; Stephen J. Crocker; Vernice Jackson-Lewis; Kelly L. Jordan-Sciutto; Shawn Hayley; Matthew P. Mount; Michael O'Hare; Steven M. Callaghan; Ruth S. Slack; Serge Przedborski; Hymie Anisman; David S. Park

Recent evidence indicates that cyclin-dependent kinases (CDKs, cdks) may be inappropriately activated in several neurodegenerative conditions. Here, we report that cdk5 expression and activity are elevated after administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin that damages the nigrostriatal dopaminergic pathway. Supporting the pathogenic significance of the cdk5 alterations are the findings that the general cdk inhibitor, flavopiridol, or expression of dominant-negative cdk5, and to a lesser extent dominant-negative cdk2, attenuates the loss of dopaminergic neurons caused by MPTP. In addition, CDK inhibition strategies attenuate MPTP-induced hypolocomotion and markers of striatal function independent of striatal dopamine. We propose that cdk5 is a key regulator in the degeneration of dopaminergic neurons in Parkinsons disease.


Journal of Biological Chemistry | 1999

Involvement of Cell Cycle Elements, Cyclin-dependent Kinases, pRb, and E2F·DP, in B-amyloid-induced Neuronal Death

Andrew Giovanni; Friederike Wirtz-Brugger; Elizabeth Keramaris; Ruth S. Slack; David S. Park

Previous evidence by others has indicated that a variety of cell cycle-related molecules are up-regulated in brains of Alzheimer’s disease patients. The significance of this increase, however, is unclear. Accordingly, we examined the obligate nature of cyclin-dependent kinases and select downstream targets of these kinases in death of neurons evoked by B-amyloid (AB) protein. We present pharmacological and molecular biological evidence that cyclin-dependent kinases, in particular Cdk4/6, are required for such neuronal death. In addition, we demonstrate that the substrate of Cdk4/6, pRb/p107, is phosphorylated during AB treatment and that one target of pRb/p107, the E2F·DP complex, is required for AB-evoked neuronal death. These results provide evidence that cell cycle elements play a required role in death of neurons evoked by AB and suggest that these elements play an integral role in Alzheimer’s disease-related neuronal death.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP

M. Emdadul Haque; Kelly Jean Thomas; Cheryl D'Souza; Steve Callaghan; Tohru Kitada; Ruth S. Slack; Paul D. Fraser; Mark R. Cookson; Anurag Tandon; David S. Park

PTEN-induced putative kinase 1 (Pink1) is a recently identified gene linked to a recessive form of familial Parkinsons disease (PD). The kinase contains a mitochondrial localization sequence and is reported to reside, at least in part, in mitochondria. However, neither the manner by which the loss of Pink1 contributes to dopamine neuron loss nor its impact on mitochondrial function and relevance to death is clear. Here, we report that depletion of Pink1 by RNAi increased neuronal toxicity induced by MPP+. Moreover, wild-type Pink1, but not the G309D mutant linked to familial PD or an engineered kinase-dead mutant K219M, protects neurons against MPTP both in vitro and in vivo. Intriguingly, a mutant that contains a deletion of the putative mitochondrial-targeting motif was targeted to the cytoplasm but still provided protection against 1-methyl-4-phenylpyridine (MPP+)/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity. In addition, we also show that endogenous Pink1 is localized to cytosolic as well as mitochondrial fractions. Thus, our findings indicate that Pink1 plays a functional role in the survival of neurons and that cytoplasmic targets, in addition to its other actions in the mitochondria, may be important for this protective effect.


The Journal of Neuroscience | 2007

Involvement of Interferon-γ in Microglial-Mediated Loss of Dopaminergic Neurons

Matthew P. Mount; Arman Lira; David Grimes; Patrice D. Smith; Sylvie Faucher; Ruth S. Slack; Hymie Anisman; Shawn Hayley; David S. Park

Growing evidence implicates microglia in the loss of dopaminergic neurons in Parkinsons disease (PD). However, factors mediating microglial activation in PD are poorly understood. Proinflammatory cytokines, such as interferon-γ (IFN-γ), orchestrate the actions of microglia. We report here that PD patients express significantly elevated levels of IFN-γ in their blood plasma. After this initial finding, we found that IFN-γ-deficient mice displayed attenuated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced substantia nigra pars compacta dopaminergic cell loss along with reduced loss of striatal tyrosine hydroxylase and dopamine transporter fiber density. MPTP-induced depletion of striatal dopamine and its metabolite DOPAC (3,4-dihydroxyphenylacetic acid), as well as ΔFosB, a marker of postsynaptic dysfunction, were also attenuated in these knock-out mice. Consistent with the role for IFN-γ in microglial activation, MPTP-induced morphological activation of microglia was abrogated compared with wild-type mice. To examine more mechanistically the role of IFN-γ in microglial activation, we evaluated the interactions between microglia and dopaminergic neurons in an in vitro mixed microglia/midbrain neuron rotenone-induced death paradigm. In this in vitro paradigm, dopaminergic neurons are selectively damaged by rotenone. Exogenous IFN-γ ligand alone and without rotenone resulted in dopaminergic cell loss, but only in the presence of microglia. The addition of an IFN-γ neutralizing antibody attenuated neuronal loss as a result of rotenone treatment. The presence of only wild-type microglia and not those deficient in IFN-γ receptor elicited significant dopaminergic cell loss when exposed to rotenone. Neurons deficient in IFN-γ receptor, however, did not display increased resistance to death. Finally, levels of IFN-γ message increased in microglia in response to rotenone. Together, these data suggest that IFN-γ participates in death of dopaminergic neurons by regulating microglial activity.


Neuron | 2007

Role of Cdk5-Mediated Phosphorylation of Prx2 in MPTP Toxicity and Parkinson's Disease

Dianbo Qu; Juliet Rashidian; Matthew P. Mount; Hossein Aleyasin; Mohammad Parsanejad; Arman Lira; Emdadul Haque; Yi Zhang; Steve Callaghan; Mireille Daigle; Maxime W.C. Rousseaux; Ruth S. Slack; Paul R. Albert; Inez Vincent; John Woulfe; David S. Park

We reported previously that calpain-mediated Cdk5 activation is critical for mitochondrial toxin-induced dopaminergic death. Here, we report a target that mediates this loss. Prx2, an antioxidant enzyme, binds Cdk5/p35. Prx2 is phosphorylated at T89 in neurons treated with MPP+ and/or MPTP in animals in a calpain/Cdk5/p35-dependent manner. This phosphorylation reduces Prx2 peroxidase activity. Consistent with this, p35-/- neurons show reduced oxidative stress upon MPP+ treatment. Expression of Prx2 and Prx2T89A, but not the phosphorylation mimic Prx2T89E, protects cultured and adult neurons following mitochondrial insult. Finally, downregulation of Prx2 increases oxidative stress and sensitivity to MPP+. We propose a mechanistic model by which mitochondrial toxin leads to calpain-mediated Cdk5 activation, reduced Prx2 activity, and decreased capacity to eliminate ROS. Importantly, increased Prx2 phosphorylation also occurs in nigral neurons from postmortem tissue from Parkinsons disease patients when compared to control, suggesting the relevance of this pathway in the human condition.


Journal of Cell Biology | 2001

APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death

Andre Fortin; Sean P. Cregan; Jason G. MacLaurin; Neena Kushwaha; Emma S. Hickman; Charlie S. Thompson; Antoine M. Hakim; Paul R. Albert; Francesco Cecconi; Kristian Helin; David S. Park; Ruth S. Slack

p53 is a transcriptional activator which has been implicated as a key regulator of neuronal cell death after acute injury. We have shown previously that p53-mediated neuronal cell death involves a Bax-dependent activation of caspase 3; however, the transcriptional targets involved in the regulation of this process have not been identified. In the present study, we demonstrate that p53 directly upregulates Apaf1 transcription as a critical step in the induction of neuronal cell death. Using DNA microarray analysis of total RNA isolated from neurons undergoing p53-induced apoptosis a 5–6-fold upregulation of Apaf1 mRNA was detected. Induction of neuronal cell death by camptothecin, a DNA-damaging agent that functions through a p53-dependent mechanism, resulted in increased Apaf1 mRNA in p53-positive, but not p53-deficient neurons. In both in vitro and in vivo neuronal cell death processes of p53-induced cell death, Apaf1 protein levels were increased. We addressed whether p53 directly regulates Apaf1 transcription via the two p53 consensus binding sites in the Apaf1 promoter. Electrophoretic mobility shift assays demonstrated p53–DNA binding activity at both p53 consensus binding sequences in extracts obtained from neurons undergoing p53-induced cell death, but not in healthy control cultures or when p53 or the p53 binding sites were inactivated by mutation. In transient transfections in a neuronal cell line with p53 and Apaf1 promoter–luciferase constructs, p53 directly activated the Apaf1 promoter via both p53 sites. The importance of Apaf1 as a p53 target gene in neuronal cell death was evaluated by examining p53-induced apoptotic pathways in primary cultures of Apaf1-deficient neurons. Neurons treated with camptothecin were significantly protected in the absence of Apaf1 relative to those derived from wild-type littermates. Together, these results demonstrate that Apaf1 is a key transcriptional target for p53 that plays a pivotal role in the regulation of apoptosis after neuronal injury.


The Journal of Neuroscience | 2005

Apoptosis-Inducing Factor Is a Key Factor in Neuronal Cell Death Propagated by BAX-Dependent and BAX-Independent Mechanisms

Eric C. Cheung; Lysanne Melanson-Drapeau; Sean P. Cregan; Jacqueline L. Vanderluit; Kerry L. Ferguson; William C. McIntosh; David S. Park; Steffany A. L. Bennett; Ruth S. Slack

Mitochondria release proteins that propagate both caspase-dependent and caspase-independent cell death pathways. AIF (apoptosis-inducing factor) is an important caspase-independent death regulator in multiple neuronal injury pathways. Presently, there is considerable controversy as to whether AIF is neuroprotective or proapoptotic in neuronal injury, such as oxidative stress or excitotoxicity. To evaluate the role of AIF in BAX-dependent (DNA damage induced) and BAX-independent (excitotoxic) neuronal death, we used Harlequin (Hq) mice, which are hypomorphic for AIF. Neurons carrying double mutations for Hq/Apaf1-/- (apoptosis proteases-activating factor) are impaired in both caspase-dependent and AIF-mediated mitochondrial cell death pathways. These mutant cells exhibit extended neuroprotection against DNA damage, as well as glutamate-induced excitotoxicity. Specifically, AIF is involved in NMDA- and kainic acid- but not AMPA-induced excitotoxicity. In vivo excitotoxic studies using kainic acid-induced seizure showed that Hq mice had significantly less hippocampal damage than wild-type littermates. Our results demonstrate an important role for AIF in both BAX-dependent and BAX-independent mechanisms of neuronal injury.


The EMBO Journal | 2006

Dissociating the dual roles of apoptosis‐inducing factor in maintaining mitochondrial structure and apoptosis

Eric C. Cheung; Nicholas Joza; Nancy A. E. Steenaart; Kelly A. McClellan; Margaret Neuspiel; Stephen McNamara; Jason G. MacLaurin; Peter Rippstein; David S. Park; Gordon C. Shore; Heidi M. McBride; Josef M. Penninger; Ruth S. Slack

The mitochondrial protein apoptosis‐inducing factor (AIF) translocates to the nucleus and induces apoptosis. Recent studies, however, have indicated the importance of AIF for survival in mitochondria. In the absence of a means to dissociate these two functions, the precise roles of AIF remain unclear. Here, we dissociate these dual roles using mitochondrially anchored AIF that cannot be released during apoptosis. Forebrain‐specific AIF null (tel. AifΔ) mice have defective cortical development and reduced neuronal survival due to defects in mitochondrial respiration. Mitochondria in AIF deficient neurons are fragmented with aberrant cristae, indicating a novel role of AIF in controlling mitochondrial structure. While tel. AifΔ Apaf1−/− neurons remain sensitive to DNA damage, mitochondrially anchored AIF expression in these cells significantly enhanced survival. AIF mutants that cannot translocate into nucleus failed to induce cell death. These results indicate that the proapoptotic role of AIF can be uncoupled from its physiological function. Cell death induced by AIF is through its proapoptotic activity once it is translocated to the nucleus, not due to the loss of AIF from the mitochondria.

Collaboration


Dive into the Ruth S. Slack's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean P. Cregan

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Zhang

University of Ottawa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge