Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruth Suárez is active.

Publication


Featured researches published by Ruth Suárez.


Analytica Chimica Acta | 2013

In-syringe-stirring: a novel approach for magnetic stirring-assisted dispersive liquid-liquid microextraction.

Burkhard Horstkotte; Ruth Suárez; Petr Solich; Víctor Cerdà

For the first time, the use of a magnetic stirrer within the syringe of an automated syringe pump and the resulting possible analytical applications are described. A simple instrumentation following roughly the one from sequential injection analyzer systems is used in combination with an adaptor, which is placed onto the barrel of a glass syringe. Swirling around the longitudinal axis of the syringe and holding two strong neodymium magnets, it causes a rotating magnetic field and serves as driver for a magnetic stirring bar placed inside of the syringe. In a first study it was shown that this approach leads to a sealed but also automatically adaptable reaction vessel, the syringe, in which rapid and homogeneous mixing of sample with the required reagents within short time can be carried out. In a second study in-a-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction (MSA-DLLME) was demonstrated by the application of the analyzer system to fluorimetric determination of aluminum in seawater samples using lumogallion. A linear working range up to 1.1 μmol L(-1) and a limit of detection of 6.1 nmol L(-1) were found. An average recovery of 106.0% was achieved for coastal seawaters with a reproducibility of 4.4%. The procedure lasted 210 s including syringe cleaning and only 150 μL of hexanol and 4.1 mL of sample were required.


Analytical Chemistry | 2012

Fully-Automated Fluorimetric Determination of Aluminum in Seawater by In-Syringe Dispersive Liquid–Liquid Microextraction Using Lumogallion

Ruth Suárez; Burkhard Horstkotte; Carlos M. Duarte; Víctor Cerdà

A sensitive and selective automated in-syringe dispersive liquid-liquid microextraction (DLLME) method is presented. It was successfully applied to the determination of aluminum in coastal seawater samples. The complete analytical procedure including sampling, buffering, reaction of the analyte with fluorescence reagent lumogallion (LMG), extraction, phase separation, and quantification was completely automized and carried out within 4 min. DLLME was done using n-hexanol as an extracting solvent and ethanol as a dispersing solvent in a 1:8 v/v percent mixture. The Al-LMG complex was extracted by an organic solvent and separated from the aqueous phase within the syringe of an automated syringe pump. Two devices were specially developed for this work. These were (a) the fluorescence detector and accompanying flow cell for the organic phase enriched with the reaction product and (b) a heating device integrated into the holding coil to accelerate the slow reaction kinetics. The limits of detection (3σ) and quantification (10σ) were 8.0 ± 0.5 nmol L(-1) and 26.7 ± 1.6 nmol L(-1), respectively. The relative standard deviation for eight replicate determinations of 200 nmol L(-1) Al(3+) was <1.5%. The calibration graph using the preconcentration system was linear up to 1000 nmol L(-1) with a correlation coefficient of 0.999. Ambient concentrations of samples were quantifiable with found concentrations ranging from 43 to 142 nmol L(-1). Standard additions gave analyte recoveries from 97% to 113% proving the general applicability and adequateness of the analyzer system to real sample analysis.


Talanta | 2014

In-syringe magnetic stirring-assisted dispersive liquid–liquid microextraction for automation and downscaling of methylene blue active substances assay

Ruth Suárez; Burkhard Horstkotte; Víctor Cerdà

A simple and rapid method for the determination of the methylene blue active substances assay based on in-syringe automation of magnetic stirring-assisted dispersive liquid-liquid microextraction was developed. The proposed method proved to be valid for the determination of anionic surfactant in waste, pond, well, tap, and drinking water samples. Sample mixing with reagents, extraction and phase separation were performed within the syringe of an automated syringe pump containing a magnetic stirring bar for homogenization and solvent dispersion. The syringe module was used upside-down to enable the use of chloroform as an extraction solvent of higher density than water. The calibration was found to be linear up to 0.3mg/L using only 200 µL of solvent and 4 mL of sample. The limits of detection (3σ) and quantification (10σ) were 7.0 µg/L and 22 µg/L, respectively. The relative standard deviation for 10 replicate determinations of 0.1mg/L SBDS was below 3%. Concentrations of anionic surfactants in natural water samples were in the range of 0.032-0.213 mg/L and no significant differences towards the standard method were found. Standard additions gave analyte recoveries between 95% and 106% proving the general applicability and adequateness of the system to MBSA index determination. Compared to the tedious standard method requiring up to 50 mL of chloroform, the entire procedure took only 345 s using 250-times less solvent.


Talanta | 2015

Iron speciation by microsequential injection solid phase spectrometry using 3-hydroxy-1(H)-2-methyl-4-pyridinone as chromogenic reagent

Ruth Suárez; Raquel B. R. Mesquita; Maria Rangel; Víctor Cerdà; António O.S.S. Rangel

The speciation of iron using the newly synthesized 3-hydroxy-1(H)-2-methyl-4-pyridinone by solid phase spectrophotometry in a microsequential injection lab-on-valve (µSI-LOV-SPS) methodology is described. Iron was retained in a reusable column, Nitrilotriacetic Acid Superflow (NTA) resin, and the ligand was used as both chromogenic and eluting reagent. This approach, analyte retention and matrix removal, enabled the assessment of iron (III) and total iron content in fresh waters and high salinity coastal waters with direct sample introduction, in the range of 20.0-100 µg/L. with a LOD of 9 µg/L. The overall effluent production was 2 mL, corresponding to the consumption of 0.48 µg of 2-metil-3-hydroxy-4-pyridinone, 0.34 mg of NaHCO3, 16 mg of HNO3, 4.4 µg H2O2 and 400µL of sample. Four reference samples were analyzed and a relative deviation<10% was obtained; furthermore, several bathing waters (♯13) were analyzed using the developed method and the results were comparable to those obtained by atomic absorption spectrophotometry (relative deviations<6%).


Talanta | 2013

Exploiting the use of 3,4-HPO ligands as nontoxic reagents for the determination of iron in natural waters with a sequential injection approach

Raquel B. R. Mesquita; Ruth Suárez; Víctor Cerdà; Maria Rangel; António O.S.S. Rangel

In this paper, the use of 3-hydroxy-4-pyridinone (3,4-HPO) chelators as nontoxic chromogenic reagents for iron determination is proposed. The potential application of these compounds was studied in a sequential injection system. The 3,4-HPO ligands used in this work were specially designed to complex iron(III) at physiologic pH for clinical applications. The developed sequential injection method enabled to study the reaction conditions, such as buffering and interferences. Then, to further improve the low consumption levels, a microsequential injection method was developed and effectively applied to iron determination in bathing waters using 3,4-HPO ligands. The formed iron complex has a maximum absorbance at 460 nm. The advantage of using minimal consumption values associated with sequential injection, together with the lack of toxicity of 3,4-HPO ligands, enabled to present a greener chemistry approach for iron determination in environmental samples within the range 0.10-2.00 mg Fe/L with a LOD of 7 μg/L. The overall effluent production was 350 μL corresponding to the consumption of 0.48 mg of 3,4-HPO ligand, 0.11 mg of NaHCO3, 0.16 mg of HNO3 and 50 μL of sample. Three reference samples were assessed for accuracy studies and a relative deviation <5% was obtained. The results obtained for the assessment of iron in inland bathing waters were statistically comparable to those obtained by the reference procedure.


Journal of Chromatography A | 2016

In-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction and silylation prior gas chromatography-mass spectrometry for ultraviolet filters determination in environmental water samples.

Sabrina Clavijo; Jessica Avivar; Ruth Suárez; Víctor Cerdà

A novel online approach involving in-syringe magnetic stirring assisted dispersive liquid-liquid microextraction and derivatization coupled to gas chromatography-mass spectrometry has been developed for the determination of seven UV filters extensively used in cosmetic products in environmental water samples. The effect of parameters such as the type and volume of extraction solvent, dispersive solvent and derivatization agent, pH, ionic strength and stirring time, was studied using multivariate experimental design. Extraction, derivatization and preconcentration were simultaneously performed using acetone as dispersive solvent, N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) as derivatization agent and trichloroethylene as extraction solvent. After stirring during 160s, the sedimented phase was transferred to a rotary micro-volume injection valve (3 μL) and introduced by an air stream into the injector of the GC through a stainless-steel tube used as interface. The detection limits were in the range of 0.023-0.16 μg L(-1) and good linearity was observed up to 500 μg L(-1) of the studied UV filters, with R(2) ranging between 0.9829 and 0.9963. The inter-day precision expressed as relative standard deviation (n=5) varied between 5.5 and 16.8%. Finally, the developed method was satisfactorily applied to assess the occurrence of the studied UV filters in seawater and pool water samples. Some of the studied UV filters were found in these samples and an add-recovery test was also successfully performed with recoveries between 82 and 111%.


Analytical Methods | 2014

In-syringe magnetic stirring assisted dispersive liquid–liquid micro-extraction with solvent washing for fully automated determination of cationic surfactants

Burkhard Horstkotte; Ruth Suárez; Petr Solich; Víctor Cerdà

An automated simple analyzer system for the extraction of cationic surfactants as an ion-pair with disulfine blue dye is described based on the technique in-syringe magnetic stirring-assisted dispersive liquid–liquid micro-extraction. The use of chloroform as an extraction solvent denser than water required the operation of the syringe pump upside-down. The remaining air cushion inside the syringe allowed emptying the syringe completely and reducing the dead volume significantly compared to previous studies. Since the stirring bar placed inside the syringe to obtain a closed yet size-adaptable mixing chamber remains at the same position, the former magnetic stirring bar driver was simplified. The new system configuration further enabled automated in-syringe washing of the organic phase with water and barium acetate solution to minimize interference. High signal repeatability with <5% RSD was achieved both for extraction as well as for double organic phase washing. Only 220 μL of the extraction solvent and 4 mL of the sample were required for simple extraction achieving a detection limit below 30 nmol L−1 and a linear response up to 1 μmol L−1 of cetyltrimethylammonium bromide. The time of analysis was 240 s for simple extraction. Considerable reduction of interference was achieved by extract washing up to 545 s. Analyte recovery in real water samples was 95.6 ± 7.0% on applying extract washing.


Talanta | 2017

Use of multiresponse statistical techniques to optimize the separation of diosmin, hesperidin, diosmetin and hesperitin in different pharmaceutical preparations by high performance liquid chromatography with UV-DAD

Mohamad Subhi Sammani; Sabrina Clavijo; Lindomar A. Portugal; Ruth Suárez; Hassan Seddik; Víctor Cerdà

A new method for the separation and determination of four flavonoids: hesperidin (HES), diosmin (DIO), hesperitin (HTIN), and diosmetin (DTIN) in pure form and pharmaceutical formulations has been developed by using high performance liquid chromatography (HPLC) with UV-DAD detection. Multivariate statistics (2k full factorial and Box Behnken Designs) has been used for the multiresponse optimization of the chromatographic separation, which was completed in 22min, and carried out on a symmetry® C18 column (250×3mm; 5µm) as stationary phase. Separation was conducted by gradient elution mode using a mixture of methanol, acetonitrile and water pH: 2.5 (CH3COOH), as mobile phase. Analytes were separated setting the column at 22°C, with a flow rate of 0.58mLmin-1 and detected at 285nm. Under the optimized conditions, the flavonoids showed retention times of: 8.62, 11.53, 18.55 and 19.94min for HES, DIO, HTIN and DTIN, respectively. Limits of detection and quantification were <0.0156µgmL-1 and <0.100µgmL-1, respectively. Linearity was achieved with good correlation coefficients values (r2=0.999; n=5). Intra-day and inter-day precision were found to be less than 3.44% (n=7). Finally, the proposed method was successfully applied to determine the target flavonoids in pharmaceutical preparations with satisfactory recoveries (between 95.2% and 107.9%), demonstrating that should also find application in the quality control, as well as in the pharmacokinetic studies of these drugs.


Talanta | 2011

Automated flow-based anion-exchange method for high-throughput isolation and real-time monitoring of RuBisCO in plant extracts

Ruth Suárez; Manuel Miró; Víctor Cerdà; Jeroni Galmés

In this work, a miniaturized, completely enclosed multisyringe-flow system is proposed for high-throughput purification of RuBisCO from Triticum aestivum extracts. The automated method capitalizes on the uptake of the target protein at 4°C onto Q-Sepharose Fast Flow strong anion-exchanger packed in a cylindrical microcolumn (105 × 4 mm) followed by a stepwise ionic-strength gradient elution (0-0.8 mol/L NaCl) to eliminate concomitant extract components and retrieve highly purified RuBisCO. The manifold is furnished downstream with a flow-through diode-array UV/vis spectrophotometer for real-time monitoring of the column effluent at the protein-specific wavelength of 280 nm to detect the elution of RuBisCO. Quantitation of RuBisCO and total soluble proteins in the eluate fractions were undertaken using polyacrylamide gel electrophoresis (PAGE) and the spectrophotometric Bradford assay, respectively. A comprehensive investigation of the effect of distinct concentration gradients on the isolation of RuBisCO and experimental conditions (namely, type of resin, column dimensions and mobile-phase flow rate) upon column capacity and analyte breakthrough was effected. The assembled set-up was aimed to critically ascertain the efficiency of preliminary batchwise pre-treatments of crude plant extracts (viz., polyethylenglycol (PEG) precipitation, ammonium sulphate precipitation and sucrose gradient centrifugation) in terms of RuBisCO purification and absolute recovery prior to automated anion-exchange column separation. Under the optimum physical and chemical conditions, the flow-through column system is able to admit crude plant extracts and gives rise to RuBisCO purification yields better than 75%, which might be increased up to 96 ± 9% with a prior PEG fractionation followed by sucrose gradient step.


Analytical and Bioanalytical Chemistry | 2018

Simultaneous dispersive liquid-liquid microextraction derivatisation and gas chromatography mass spectrometry analysis of subcritical water extracts of sweet and sour cherry stems

Jaroslava Švarc-Gajić; Sabrina Clavijo; Ruth Suárez; Aleksandra Cvetanović; Víctor Cerdà

AbstractCherry stems have been used in traditional medicine mostly for the treatment of urinary tract infections. Extraction with subcritical water, according to its selectivity, efficiency and other aspects, differs substantially from conventional extraction techniques. The complexity of plant subcritical water extracts is due to the ability of subcritical water to extract different chemical classes of different physico-chemical properties and polarities in a single run. In this paper, dispersive liquid-liquid microextraction (DLLME) with simultaneous derivatisation was optimised for the analysis of complex subcritical water extracts of cherry stems to allow simple and rapid preparation prior to gas chromatography-mass spectrometry (GC-MS). After defining optimal extracting and dispersive solvents, the optimised method was used for the identification of compounds belonging to different chemical classes in a single analytical run. The developed sample preparation protocol enabled simultaneous extraction and derivatisation, as well as convenient coupling with GC-MS analysis, reducing the analysis time and number of steps. The applied analytical protocol allowed simple and rapid chemical screening of subcritical water extracts and was used for the comparison of subcritical water extracts of sweet and sour cherry stems. Graphical abstractDLLME GC MS analysis of cherry stem extracts obtained by subcritical water

Collaboration


Dive into the Ruth Suárez's collaboration.

Top Co-Authors

Avatar

Víctor Cerdà

University of the Balearic Islands

View shared research outputs
Top Co-Authors

Avatar

Sabrina Clavijo

University of the Balearic Islands

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Burkhard Horstkotte

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica Avivar

University of the Balearic Islands

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

António O. S. S. Rangel

Catholic University of Portugal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge