Ruth Topless
University of Otago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruth Topless.
Arthritis & Rheumatism | 2009
Jade E Hollis-Moffatt; Xin Xu; Nicola Dalbeth; Marilyn E. Merriman; Ruth Topless; Chloe Waddell; Peter Gow; Andrew Harrison; John Highton; Peter Bb Jones; Lisa K. Stamp; Tony R. Merriman
OBJECTIVE To examine the role of genetic variation in the renal urate transporter SLC2A9 in gout in New Zealand sample sets of Māori, Pacific Island, and Caucasian ancestry and to determine if the Māori and Pacific Island samples could be useful for fine-mapping. METHODS Patients (n= 56 Māori, 69 Pacific Island, and 131 Caucasian) were recruited from rheumatology outpatient clinics and satisfied the American College of Rheumatology criteria for gout. The control samples comprised 125 Māori subjects, 41 Pacific Island subjects, and 568 Caucasian subjects without arthritis. SLC2A9 single-nucleotide polymorphisms rs16890979 (V253I), rs5028843, rs11942223, and rs12510549 were genotyped (possible etiologic variants in Caucasians). RESULTS Association of the major allele of rs16890979, rs11942223, and rs5028843 with gout was observed in all sample sets (P = 3.7 x 10(-7), 1.6 x 10(-6), and 7.6 x 10(-5) for rs11942223 in the Māori, Pacific Island, and Caucasian samples, respectively). One 4-marker haplotype (1/1/2/1; more prevalent in the Māori and Pacific Island control samples) was not observed in a single gout case. CONCLUSION Our data confirm a role of SLC2A9 in gout susceptibility in a New Zealand Caucasian sample set, with the effect on risk (odds ratio >2.0) greater than previous estimates. We also demonstrate association of SLC2A9 with gout in samples of Māori and Pacific Island ancestry and a consistent pattern of haplotype association. The presence of both alleles of rs16890979 on susceptibility and protective haplotypes in the Māori and Pacific Island sample is evidence against a role for this nonsynonymous variant as the sole etiologic agent. More extensive linkage disequilibrium in Māori and Pacific Island samples suggests that Caucasian samples may be more useful for fine-mapping.
Human Molecular Genetics | 2010
Amanda Phipps-Green; Jade E Hollis-Moffatt; Nicola Dalbeth; Marilyn E. Merriman; Ruth Topless; Peter Gow; Andrew Harrison; John Highton; Peter Bb Jones; Lisa K. Stamp; Tony R. Merriman
Genetic variation in ABCG2 (rs2231142, Q141K), encoding a uric acid transporter, is associated with gout in diverse populations. The aim of this study was to examine a role for ABCG2 in gout susceptibility in New Zealand Māori, Pacific Island and Caucasian samples. Patients (n = 185, 173 and 214, for Māori, Pacific Island and Caucasian, respectively) satisfied the American College of Rheumatology gout classification criteria. The comparison samples comprised 284, 129 and 562 individuals, respectively, without gout. rs2231142 was genotyped and stratification accounted for using genomic control markers. Association of the minor allele of rs2231142 with gout was observed in the Pacific Island samples (OR = 2.80, P(STRAT) < 0.001 after accounting for effects of population structure), but not in the Māori samples (OR = 1.08, P(STRAT)= 0.70), with heterogeneity in association evident between the Māori and Pacific Island datasets (P(HET) = 0.001). A similar dichotomy in association was observed when samples were stratified into Western (Tonga, Samoa, Niue, Tokelau) versus Eastern Polynesian (Māori, Cook Island) origin (OR = 2.59, P(STRAT) < 0.001; OR = 1.12, P(STRAT)= 0.48, respectively; P(HET) = 0.005). Association with gout was observed in the Caucasian samples (OR = 2.20, P = 3.2 × 10(-8)). Unlike SLC2A9, which is a strong risk factor for gout in both Māori and Pacific Island people, ABCG2 rs2231142 has a strong effect only in people of Western Polynesian ancestry. Our results emphasize the need to account for sub-population differences when undertaking biomedical genetic research in a group defined by a geographical region and shared ancestry but characterized by migratory events that create bottlenecks and altered genetic structure in the founder populations.
Human Molecular Genetics | 2013
Gregory T. Jones; Matthew J. Bown; Solveig Gretarsdottir; Simon P.R. Romaine; Anna Helgadottir; Grace Yu; Gerard Tromp; Paul Norman; Cao Jin; Annette F. Baas; Jan D. Blankensteijn; Iftikhar J. Kullo; L. Victoria Phillips; Michael J.A. Williams; Ruth Topless; Tony R. Merriman; Thodor M. Vasudevan; David R. Lewis; Ross D. Blair; Andrew A. Hill; Robert D. Sayers; Janet T. Powell; Panagiotis Deloukas; Gudmar Thorleifsson; Stefan E. Matthiasson; Unnur Thorsteinsdottir; Jonathan Golledge; Robert A. S. Ariëns; Anne Johnson; Soroush Sohrabi
Abdominal aortic aneurysm (AAA) is a common human disease with a high estimated heritability (0.7); however, only a small number of associated genetic loci have been reported to date. In contrast, over 100 loci have now been reproducibly associated with either blood lipid profile and/or coronary artery disease (CAD) (both risk factors for AAA) in large-scale meta-analyses. This study employed a staged design to investigate whether the loci for these two phenotypes are also associated with AAA. Validated CAD and dyslipidaemia loci underwent screening using the Otago AAA genome-wide association data set. Putative associations underwent staged secondary validation in 10 additional cohorts. A novel association between the SORT1 (1p13.3) locus and AAA was identified. The rs599839 G allele, which has been previously associated with both dyslipidaemia and CAD, reached genome-wide significance in 11 combined independent cohorts (meta-analysis with 7048 AAA cases and 75 976 controls: G allele OR 0.81, 95% CI 0.76-0.85, P = 7.2 × 10(-14)). Modelling for confounding interactions of concurrent dyslipidaemia, heart disease and other risk factors suggested that this marker is an independent predictor of AAA susceptibility. In conclusion, a genetic marker associated with cardiovascular risk factors, and in particular concurrent vascular disease, appeared to independently contribute to susceptibility for AAA. Given the potential genetic overlap between risk factor and disease phenotypes, the use of well-characterized case-control cohorts allowing for modelling of cardiovascular disease risk confounders will be an important component in the future discovery of genetic markers for conditions such as AAA.
Annals of the Rheumatic Diseases | 2014
Caitlin Batt; Amanda Phipps-Green; Michael A. Black; Murray Cadzow; Marilyn E. Merriman; Ruth Topless; Peter Gow; Andrew Harrison; John Highton; Peter Jones; Lisa K. Stamp; Nicola Dalbeth; Tony R. Merriman
Objective Consumption of high fructose corn syrup (HFCS)-sweetened beverages increases serum urate and risk of incident gout. Genetic variants in SLC2A9, that exchanges uric acid for glucose and fructose, associate with gout. We tested association between sugar (sucrose)-sweetened beverage (SSB) consumption and prevalent gout. We also tested the hypothesis that SLC2A9 genotype and SSB consumption interact to determine gout risk. Methods Participants were 1634 New Zealand (NZ) European Caucasian, Ma¯ori and Pacific Island people and 7075 European Caucasians from the Atherosclerosis Risk in Communities (ARIC) study. NZ samples were genotyped for rs11942223 and ARIC for rs6449173. Effect estimates were multivariate adjusted. Results SSB consumption increased gout risk. The OR for four drinks/day relative to zero was 6.89 (p=0.045), 5.19 (p=0.010) and 2.84 (p=0.043) for European Caucasian, Ma¯ori and Pacific Islanders, respectively. With each extra daily SSB serving, carriage of the gout-protective allele of SLC2A9 associated with a 15% increase in risk (p=0.078), compared with a 12% increase in non-carriers (p=0.002). The interaction term was significant in pooled (pInteraction=0.01) but not meta-analysed (pInteraction=0.99) data. In ARIC, with each extra daily serving, a greater increase in serum urate protective allele carriers (0.005 (p=8.7×10−5) compared with 0.002 (p=0.016) mmol/L) supported the gout data (pInteraction=0.062). Conclusions Association of SSB consumption with prevalent gout supports reduction of SSB in management. The interaction data suggest that SLC2A9-mediated renal uric acid excretion is physiologically influenced by intake of simple sugars derived from SSB, with SSB exposure negating the gout risk discrimination of SLC2A9.
Annals of the Rheumatic Diseases | 2016
Amanda Phipps-Green; Marilyn E. Merriman; Ruth Topless; S Altaf; Grant W. Montgomery; Christopher Franklin; Gregory T. Jones; A.M. van Rij; Douglas White; Lisa K. Stamp; Nicola Dalbeth; Tony R. Merriman
Objectives Twenty-eight genetic loci are associated with serum urate levels in Europeans. Evidence for association with gout at most loci is absent, equivocal or not replicated. Our aim was to test the loci for association with gout meeting the American College of Rheumatology gout classification criteria in New Zealand European and Polynesian case-control sample sets. Methods 648 European cases and 1550 controls, and 888 Polynesian (Ma¯ori and Pacific) cases and 1095 controls were genotyped. Association with gout was tested by logistic regression adjusting for age and sex. Power was adequate (>0.7) to detect effects of OR>1.3. Results We focused on 24 loci without previous consistent evidence for association with gout. In Europeans, we detected association at seven loci, one of which was the first report of association with gout (IGF1R). In Polynesian, association was detected at three loci. Meta-analysis revealed association at eight loci—two had not previously been associated with gout (PDZK1 and MAF). In participants with higher Polynesian ancestry, there was association in an opposing direction to Europeans at PRKAG2 and HLF (HLF is the first report of association with gout). There was obvious inconsistency of gout association at four loci (GCKR, INHBC, SLC22A11, SLC16A9) that display very similar effects on urate levels. Conclusions We provide the first evidence for association with gout at four loci (IGF1R, PDZK1, MAF, HLF). Understanding why there is lack of correlation between urate and gout effect sizes will be important in understanding the aetiology of gout.
Arthritis Research & Therapy | 2010
Jade E Hollis-Moffatt; Michael Chen-Xu; Ruth Topless; Nicola Dalbeth; Peter Gow; Andrew Harrison; John Highton; Peter Bb Jones; Michael J. Nissen; Malcolm D. Smith; Andre M. van Rij; Gregory T. Jones; Lisa K. Stamp; Tony R. Merriman
IntroductionThe single nucleotide polymorphism (SNP) rs6822844 within the KIAA1109-TENR-IL2-IL21 gene cluster has been associated with rheumatoid arthritis (RA). Other variants within this cluster, including rs17388568 that is not in linkage disequilibrium (LD) with rs6822844, and rs907715 that is in moderate LD with rs6822844 and rs17388568, have been associated with a number of autoimmune phenotypes, including type 1 diabetes (T1D). Here we aimed to: one, confirm at a genome-wide level of significance association of rs6822844 with RA and, two, evaluate whether or not there were effects independent of rs6822844 on RA at the KIAA1109-TENR-IL2-IL21 locus.MethodsA total of 842 Australasian RA patients and 1,115 controls of European Caucasian ancestry were genotyped for rs6822844, rs17388568 and rs907715. Meta-analysis of these data with published and publicly-available data was conducted using STATA.ResultsNo statistically significant evidence for association was observed in the Australasian sample set for rs6822844 (odds ratio (OR) = 0.95 (0.80 to 1.12), P = 0.54), or rs17388568 (OR = 1.03 (0.90 to 1.19), P = 0.65) or rs907715 (OR = 0.98 (0.86 to 1.12), P = 0.69). When combined in a meta-analysis using data from a total of 9,772 cases and 10,909 controls there was a genome-wide level of significance supporting association of rs6822844 with RA (OR = 0.86 (0.82 to 0.91), P = 8.8 × 10-8, P = 2.1 × 10-8 including North American Rheumatoid Arthritis Consortium data). Meta-analysis of rs17388568, using a total of 6,585 cases and 7,528 controls, revealed no significant association with RA (OR = 1.03, (0.98 to 1.09); P = 0.22) and meta-analysis of rs907715 using a total of 2,689 cases and 4,045 controls revealed a trend towards association (OR = 0.93 (0.87 to 1.00), P = 0.07). However, this trend was not independent of the association at rs6822844.ConclusionsThe KIAA1109-TENR-IL2-IL21 gene cluster, that encodes an interleukin (IL-21) that plays an important role in Th17 cell biology, is the 20th locus for which there is a genome-wide (P ≤ 5 ×10-8) level of support for association with RA. As for most other autoimmune diseases, with the notable exception of T1D, rs6822844 is the dominant association in the locus. The KIAA1109-TENR-IL2-IL21 locus also confers susceptibility to other autoimmune phenotypes with a heterogeneous pattern of association.
Pharmacogenomics Journal | 2017
Rebecca L. Roberts; Mary C Wallace; Amanda Phipps-Green; Ruth Topless; Jill Drake; Paul Tan; Nicola Dalbeth; Tony R. Merriman; Lisa K. Stamp
Many patients fail to achieve the recommended serum urate (SU) target (<6 mgdl−1) with allopurinol. The aim of our study was to examine the association of ABCG2 with SU target in response to standard doses of allopurinol using a cohort with confirmed adherence. Good response was defined as SU<6 mgdl−1 on allopurinol ⩽300 mgd−1 and poor response as SU⩾6 mgdl−1 despite allopurinol >300 mgd−1. Adherence was confirmed by oxypurinol concentrations. ABCG2 genotyping was performed using pre-designed single nucleotide polymorphism (SNP) TaqMan assays. Of 264 patients, 120 were good responders, 68 were poor responders and 76 were either non-adherent or could not be classified. The minor allele of ABCG2 SNP rs2231142 conferred a significantly increased risk of poor response to allopurinol (odds ratio=2.71 (1.70–4.48), P=6.0 × 10−5). This association remained significant after adjustment for age, sex, body mass index, ethnicity, estimated glomerular filtration rate, diuretic use and SU off urate-lowering therapy. ABCG2 rs2231142 predicts poor response to allopurinol, as defined by SU⩾6 mgdl−1 despite allopurinol >300 mgd−1.
Arthritis Research & Therapy | 2015
Cushla McKinney; Lisa K. Stamp; Nicola Dalbeth; Ruth Topless; Richard O. Day; Diluk R. W. Kannangara; Kenneth M. Williams; Matthijs Janssen; Tl Jansen; Leo A. B. Joosten; Timothy R. D. J. Radstake; Philip L. Riches; Anne-Kathrin Tausche; Frédéric Lioté; Alexander So; Tony R. Merriman
IntroductionThe acute gout flare results from a localised self-limiting innate immune response to monosodium urate (MSU) crystals deposited in joints in hyperuricaemic individuals. Activation of the caspase recruitment domain-containing protein 8 (CARD8) NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome by MSU crystals and production of mature interleukin-1β (IL-1β) is central to acute gouty arthritis. However very little is known about genetic control of the innate immune response involved in acute gouty arthritis. Therefore our aim was to test functional single nucleotide polymorphism (SNP) variants in the toll-like receptor (TLR)-inflammasome-IL-1β axis for association with gout.Methods1,494 gout cases of European and 863 gout cases of New Zealand (NZ) Polynesian (Māori and Pacific Island) ancestry were included. Gout was diagnosed by the 1977 ARA gout classification criteria. There were 1,030 Polynesian controls and 10,942 European controls including from the publicly-available Atherosclerosis Risk in Communities (ARIC) and Framingham Heart (FHS) studies. The ten SNPs were either genotyped by Sequenom MassArray or by Affymetrix SNP array or imputed in the ARIC and FHS datasets. Allelic association was done by logistic regression adjusting by age and sex with European and Polynesian data combined by meta-analysis. Sample sets were pooled for multiplicative interaction analysis, which was also adjusted by sample set.ResultsEleven SNPs were tested in the TLR2, CD14, IL1B, CARD8, NLRP3, MYD88, P2RX7, DAPK1 and TNXIP genes. Nominally significant (P < 0.05) associations with gout were detected at CARD8 rs2043211 (OR = 1.12, P = 0.007), IL1B rs1143623 (OR = 1.10, P = 0.020) and CD14 rs2569190 (OR = 1.08; P = 0.036). There was significant multiplicative interaction between CARD8 and IL1B (P = 0.005), with the IL1B risk genotype amplifying the risk effect of CARD8.ConclusionThere is evidence for association of gout with functional variants in CARD8, IL1B and CD14. The gout-associated allele of IL1B increases expression of IL-1β – the multiplicative interaction with CARD8 would be consistent with a synergy of greater inflammasome activity (resulting from reduced CARD8) combined with higher levels of pre-IL-1β expression leading to increased production of mature IL-1β in gout.
Arthritis Research & Therapy | 2013
Tanya J Flynn; Amanda Phipps-Green; Jade E Hollis-Moffatt; Marilyn E. Merriman; Ruth Topless; Grant W. Montgomery; Brett Chapman; Lisa K. Stamp; Nicola Dalbeth; Tony R. Merriman
IntroductionThere is inconsistent association between urate transporters SLC22A11 (organic anion transporter 4 (OAT4)) and SLC22A12 (urate transporter 1 (URAT1)) and risk of gout. New Zealand (NZ) Māori and Pacific Island people have higher serum urate and more severe gout than European people. The aim of this study was to test genetic variation across the SLC22A11/SLC22A12 locus for association with risk of gout in NZ sample sets.MethodsA total of 12 single nucleotide polymorphism (SNP) variants in four haplotype blocks were genotyped using TaqMan® and Sequenom MassArray in 1003 gout cases and 1156 controls. All cases had gout according to the 1977 American Rheumatism Association criteria. Association analysis of single markers and haplotypes was performed using PLINK and Stata.ResultsA haplotype block 1 SNP (rs17299124) (upstream of SLC22A11) was associated with gout in less admixed Polynesian sample sets, but not European Caucasian (odds ratio; OR = 3.38, P = 6.1 × 10-4; OR = 0.91, P = 0.40, respectively) sample sets. A protective block 1 haplotype caused the rs17299124 association (OR = 0.28, P = 6.0 × 10-4). Within haplotype block 2 (SLC22A11) we could not replicate previous reports of association of rs2078267 with gout in European Caucasian (OR = 0.98, P = 0.82) sample sets, however this SNP was associated with gout in Polynesian (OR = 1.51, P = 0.022) sample sets. Within haplotype block 3 (including SLC22A12) analysis of haplotypes revealed a haplotype with trans-ancestral protective effects (OR = 0.80, P = 0.004), and a second haplotype conferring protection in less admixed Polynesian sample sets (OR = 0.63, P = 0.028) but risk in European Caucasian samples (OR = 1.33, P = 0.039).ConclusionsOur analysis provides evidence for multiple ancestral-specific effects across the SLC22A11/SLC22A12 locus that presumably influence the activity of OAT4 and URAT1 and risk of gout. Further fine mapping of the association signal is needed using trans-ancestral re-sequence data.
Arthritis Research & Therapy | 2013
Humaira Rasheed; Amanda Phipps-Green; Ruth Topless; Jade E Hollis-Moffatt; Jennie Harré Hindmarsh; Christopher Franklin; Nicola Dalbeth; Peter Bb Jones; Douglas White; Lisa K. Stamp; Tony R. Merriman
IntroductionThe T allele of a single nucleotide polymorphism (SNP: rs2544390) in lipoprotein receptor-related protein 2 (LRP2) is associated with higher serum urate and risk of gout in Japanese individuals. SNP rs2544390 also interacts with alcohol consumption in determining hyperuricemia in this population. We investigated the association of rs2544390 with gout, and interaction with all types of alcohol consumption in European and New Zealand (NZ) Māori and Pacific subjects, and a Māori study cohort from the East Coast region of NZ’s North Island.MethodsRs2544390 was genotyped by Taqman®. From NZ a total of 1205 controls and 1431 gout cases clinically ascertained were used. Publicly available genotype and serum urate data were utilized from the Atherosclerosis Risk in Communities (ARIC) study and the Framingham Heart Study (FHS). Alcohol consumption data were obtained by consumption frequency questions in all study cohorts. Multivariate adjusted logistic regression was done using STATA.ResultsThe T allele of rs2544390 was associated with increased risk of gout in the combined Māori and Pacific Island cohort (OR = 1.20, P = 0.009), and associated with gout in the European subjects, but with a protective effect (OR = 0.79, PUnadjusted = 0.02). Alcohol consumption was positively associated with risk of gout in Māori and Pacific subjects (0.2% increased risk/g/week, P = 0.004). There was a non-additive interaction between any alcohol intake and the risk of gout in the combined Māori and Pacific cohorts (PInteraction = 0.001), where any alcohol intake was associated with a 4.18-fold increased risk in the CC genotype group (P = 6.6x10-5), compared with a 1.14-fold increased risk in the CT/TT genotype group (P = 0.40). These effects were not observed in European subjects.ConclusionsAssociation of the T-allele with gout risk in the Māori and Pacific subjects was consistent with this allele increasing serum urate in Japanese individuals. The non-additive interaction in the Māori and Pacific subjects showed that alcohol consumption over-rides any protective effect conferred by the CC genotype. Further exploration of the mechanism underlying this interaction should generate new understanding of the biological role of alcohol in gout, in addition to strengthening the evidence base for reduction of alcohol consumption in the management of gout.