Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruth Volland is active.

Publication


Featured researches published by Ruth Volland.


Nature | 2015

Telomerase activation by genomic rearrangements in high-risk neuroblastoma

Martin Peifer; Falk Hertwig; Frederik Roels; Daniel Dreidax; Moritz Gartlgruber; Roopika Menon; Andrea Krämer; Justin L. Roncaioli; Frederik Sand; Johannes M. Heuckmann; Fakhera Ikram; Rene Schmidt; Sandra Ackermann; Anne Engesser; Yvonne Kahlert; Wenzel Vogel; Janine Altmüller; Peter Nürnberg; Jean Thierry-Mieg; Danielle Thierry-Mieg; Aruljothi Mariappan; Stefanie Heynck; Erika Mariotti; Kai-Oliver Henrich; Christian Gloeckner; Graziella Bosco; Ivo Leuschner; Michal R. Schweiger; Larissa Savelyeva; Simon C. Watkins

Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours.


Genome Biology | 2015

Comparison of RNA-seq and microarray-based models for clinical endpoint prediction

Wenqian Zhang; Falk Hertwig; Jean Thierry-Mieg; Wenwei Zhang; Danielle Thierry-Mieg; Jian Wang; Cesare Furlanello; Viswanath Devanarayan; Jie Cheng; Youping Deng; Barbara Hero; Huixiao Hong; Meiwen Jia; Li Li; Simon Lin; Yuri Nikolsky; André Oberthuer; Tao Qing; Zhenqiang Su; Ruth Volland; Charles Wang; May D. Wang; Junmei Ai; Davide Albanese; Shahab Asgharzadeh; Smadar Avigad; Wenjun Bao; Marina Bessarabova; Murray H. Brilliant; Benedikt Brors

BackgroundGene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model.ResultsWe generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs. exon-junction level) do not significantly affect performances of the models.ConclusionsWe demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings may be valuable to guide future studies on the development of gene expression-based predictive models and their implementation in clinical practice.


Clinical Journal of The American Society of Nephrology | 2014

Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice.

Heike Hoyer-Kuhn; Sina Kohbrok; Ruth Volland; Jeremy Franklin; Barbara Hero; Bodo B. Beck; Bernd Hoppe

BACKGROUND AND OBJECTIVESnPrimary hyperoxaluria type I (PH I) is caused by deficiency of the liver-specific enzyme alanine-glyoxylate:aminotransferase (AGT). Many mutations are known to perturb AGT protein folding. Vitamin B6 (B6) is the only specific drug available for treatment. Although B6 has been used for >40 years, controlled data on B6 efficacy are lacking. Therefore, this study investigated the absolute and relative change of urinary oxalate (Uox) excretion under increasing dosages of B6, the first prospective trial to do so.nnnDESIGN, SETTING, PARTICIPANTS, & MEASUREMENTSnB6 response was studied in 12 patients (7 male patients) with genetically confirmed PH I (3 Gly170Arg homozygous, 5 compound Gly170Arg and/or Phe152Ile heterozygous, and 4 negative for Gly170Arg and/or Phe152Ile mutations) and noncompromised renal function. Efficacy was defined as a 30% relative reduction in Uox excretion. B6 was administered orally starting at 5 mg/kg body weight per day and given in increments of 5 mg/kg every 6 weeks, up to a final dosage of 20 mg/kg per day at week 24. Uox and serum B6 levels were measured every 6 weeks.nnnRESULTSnMean relative Uox reduction was 25.5%. Uox declined from 2.09±0.55 (mean±SD) at baseline to 1.52±0.60 mmol/1.73 m(2) per day (P=0.01) at week 24. Serum B6 levels increased from 22.5±8.7 to 1217±776 ng/ml (P<0.001). Six patients showed a ≥30% relative reduction of Uox at week 24.nnnCONCLUSIONnThis first prospective trial confirmed B6 efficacy in 50% of patients (three of three homozygous, one of five heterozygous, and two of four patients negative for the Gly170Arg and/or Phe152Ile mutations). Interestingly, no complete biochemical remission was observed, even in the homozygous Gly170Arg study participants. Future trials are necessary to learn more about genotype-related B6 response and B6 metabolism.


Journal of Clinical Oncology | 2013

Iodine-123 Metaiodobenzylguanidine Scintigraphy Scoring Allows Prediction of Outcome in Patients With Stage 4 Neuroblastoma: Results of the Cologne Interscore Comparison Study

Boris Decarolis; Christina Schneider; Barbara Hero; Thorsten Simon; Ruth Volland; Frederik Roels; Markus Dietlein; Frank Berthold; Matthias Schmidt

PURPOSEnRadioiodinated metaiodobenzylguanidine ((123)I-mIBG) scintigraphy is an established imaging method in neuroblastoma. Semiquantitative scoring systems have been developed to assess the extent of disease and response to chemotherapy. We present the results of the comparison between the SIOPEN [International Society of Pediatric Oncology Europe Neuroblastoma Group] score and the modified Curie score.nnnPATIENTS AND METHODSnWe retrospectively analyzed 147 mIBG scans of 58 patients older than 1 year of age with stage 4 neuroblastoma from German Neuroblastoma Trial NB97 that were assessed according to the SIOPEN and the Curie scoring method. mIBG examinations were performed at diagnosis and after four and six cycles of chemotherapy.nnnRESULTSnScoring results were highly correlated between both methods, and interobserver reliability was excellent. A Curie score ≤ 2 and a SIOPEN score ≤ 4 (best cutoff) at diagnosis were correlated to significantly better event-free and overall survival compared with higher scores. After four cycles of chemotherapy, overall survival was significantly better for mIBG-negative patients compared with those with any residual mIBG-positive metastases. After six cycles of chemotherapy, there was no difference in survival between mIBG-negative patients and patients with residual mIBG-positive metastases. Patients without mIBG-positive metastases after four and six cycles of chemotherapy had a better overall survival, but late clearance of mIBG-positive metastases did not improve outcome.nnnCONCLUSIONnHigher mIBG scores at diagnosis and occurrence of any residual mIBG-positive metastases after four cycles of chemotherapy predicted unfavorable outcome for patients with stage 4 neuroblastoma. Later clearance of metastases did not improve prognosis. The Curie and the SIOPEN score were equally reliable and predictive.


Clinical Cancer Research | 2015

Revised risk estimation and treatment stratification of low- and intermediate-risk neuroblastoma patients by integrating clinical and molecular prognostic markers

André Oberthuer; Dilafruz Juraeva; Barbara Hero; Ruth Volland; Carolina Sterz; Rene Schmidt; Andreas Faldum; Yvonne Kahlert; Anne Engesser; Shahab Asgharzadeh; Robert C. Seeger; Miki Ohira; Akira Nakagawara; Paola Scaruffi; Gian Paolo Tonini; Isabelle Janoueix-Lerosey; Olivier Delattre; Gudrun Schleiermacher; Jo Vandesompele; Franki Speleman; Rosa Noguera; Marta Piqueras; Jean Bénard; Alexander Valent; Smadar Avigad; Isaac Yaniv; Richard Grundy; Monika Ortmann; Chunxuan Shao; Manfred Schwab

Purpose: To optimize neuroblastoma treatment stratification, we aimed at developing a novel risk estimation system by integrating gene expression–based classification and established prognostic markers. Experimental Design: Gene expression profiles were generated from 709 neuroblastoma specimens using customized 4 × 44 K microarrays. Classification models were built using 75 tumors with contrasting courses of disease. Validation was performed in an independent test set (n = 634) by Kaplan–Meier estimates and Cox regression analyses. Results: The best-performing classifier predicted patient outcome with an accuracy of 0.95 (sensitivity, 0.93; specificity, 0.97) in the validation cohort. The highest potential clinical value of this predictor was observed for current low-risk patients [5-year event-free survival (EFS), 0.84 ± 0.02 vs. 0.29 ± 0.10; 5-year overall survival (OS), 0.99 ± 0.01 vs. 0.76 ± 0.11; both P < 0.001] and intermediate-risk patients (5-year EFS, 0.88 ± 0.06 vs. 0.41 ± 0.10; 5-year OS, 1.0 vs. 0.70 ± 0.09; both P < 0.001). In multivariate Cox regression models for low-risk/intermediate-risk patients, the classifier outperformed risk assessment of the current German trial NB2004 [EFS: hazard ratio (HR), 5.07; 95% confidence interval (CI), 3.20–8.02; OS: HR, 25.54; 95% CI, 8.40–77.66; both P < 0.001]. On the basis of these findings, we propose to integrate the classifier into a revised risk stratification system for low-risk/intermediate-risk patients. According to this system, we identified novel subgroups with poor outcome (5-year EFS, 0.19 ± 0.08; 5-year OS, 0.59 ± 0.1), for whom we propose intensified treatment, and with beneficial outcome (5-year EFS, 0.87 ± 0.05; 5-year OS, 1.0), who may benefit from treatment de-escalation. Conclusions: Combination of gene expression–based classification and established prognostic markers improves risk estimation of patients with low-risk/intermediate-risk neuroblastoma. We propose to implement our revised treatment stratification system in a prospective clinical trial. Clin Cancer Res; 21(8); 1904–15. ©2014 AACR. See related commentary by Attiyeh and Maris, p. 1782


Genes, Chromosomes and Cancer | 2014

Chromosome 17/17q gain and unaltered profiles in high resolution array-CGH are prognostically informative in neuroblastoma.

Jessica Theissen; André Oberthuer; Anja Hombach; Ruth Volland; Falk Hertwig; Matthias Fischer; Ruediger Spitz; Marc Zapatka; Benedikt Brors; Monika Ortmann; Thorsten Simon; Barbara Hero; Frank Berthold

The prognostic relevance of chromosome 17 gain in neuroblastoma is still discussed. This investigation specifies the frequency, type, size, and transcriptional relevance in a large patient cohort. Primary tumor material of 202 patients was analyzed using high‐resolution oligonucleotide array‐based comparative genomic hybridization (aCGH) and correlated with clinical and survival data. A subset (nu2009=u2009145) was correlated for differentially expressed genes (DEG) by microarray analysis. Chromosome 17 aCGH analysis showed numerical gain in 94/202 patients (47%), partial gain in 93/202 patients (46%), and no gain in 15/202 patients (7%). The frequency of partial gain was higher in stage 4 neuroblastoma (stage 1 15%; stage 2 12%; stage 3 16%; stage 4S 7%; and stage 4 50%). Overall survival (OS) was superior in patients with numerical gain compared with patients with partial gain or no gain (5‐y‐OS: 0.95u2009±u20090.02 vs. 0.63u2009±u20090.05 vs. 0.60u2009±u20090.13; Pu2009<u20090.001). Gene expression analysis demonstrated 95/130 DEGs between tumors with numerical or partial chromosome/no gain. Only one DEG (CCKBR) was detected comparing tumors with partial gain and those with no gain. In patients with partial gain, the distribution of breakpoints did not correlate with stage and 11q status, but with MYCN amplification and 1p status. The “best” breakpoints in cases with partial 17q gain were at 42.5 Mb for event‐free and 26.6 Mb for OS. Numerical gain of chromosome 17 is associated with a better prognosis than partial and no gain. The group of tumors with partial gain was similar to the group without gain with respect to stage distribution, outcome, and gene expression profile.


Cancer Letters | 2016

Boolean modeling identifies Greatwall/MASTL as an important regulator in the AURKA network of neuroblastoma

Meike Dahlhaus; Andre Burkovski; Falk Hertwig; Christoph Müssel; Ruth Volland; Matthias Fischer; Klaus-Michael Debatin; Hans A. Kestler; Christian Beltinger

Aurora Kinase A (AURKA) is often overexpressed in neuroblastoma (NB) with poor outcome. The causes of AURKA overexpression in NB are unknown. Here, we describe a gene regulatory network consisting of core regulators of AURKA protein expression and activation during mitosis to identify potential causes. This network was transformed to a dynamic Boolean model. Simulated activation of the serine/threonine protein kinase Greatwall (GWL, encoded by MASTL) that attenuates the pivotal AURKA inhibitor PP2A, predicted stabilization of AURKA. Consistent with this notion, gene set enrichment analysis showed enrichment of mitotic spindle assembly genes and MYCN target genes in NB with high GWL/MASTL expression. In line with the prediction of GWL/MASTL enhancing AURKA, elevated expression of GWL/MASTL was associated with NB risk factors and poor survival of patients. These results establish Boolean network modeling of oncogenic pathways in NB as a useful means for guided discovery in this enigmatic cancer.


BMC Cancer | 2017

Complete surgical resection improves outcome in INRG high-risk patients with localized neuroblastoma older than 18 months

Janina Fischer; Alexandra Pohl; Ruth Volland; Barbara Hero; Martin Dübbers; Grigore Cernaianu; Frank Berthold; Dietrich von Schweinitz; Thorsten Simon

BackgroundAlthough several studies have been conducted on the role of surgery in localized neuroblastoma, the impact of surgical timing and extent of primary tumor resection on outcome in high-risk patients remains controversial.MethodsPatients from the German neuroblastoma trial NB97 with localized neuroblastoma INSS stage 1–3 agexa0>xa018xa0months were included for retrospective analysis. Imaging reports were reviewed by two independent physicians for Image Defined Risk Factors (IDRF). Operation notes and corresponding imaging reports were analyzed for surgical radicality. The extent of tumor resection was classified as complete resection (95–100%), gross total resection (90–95%), incomplete resection (50–90%), and biopsy (<50%) and correlated with local control rate and outcome. Patients were stratified according to the International Neuroblastoma Risk Group (INRG) staging system. Survival curves were estimated according to the method of Kaplan and Meier and compared by the log-rank test.ResultsA total of 179 patients were included in this study. 77 patients underwent more than one primary tumor operation. After best surgery, 68.7% of patients achieved complete resection of the primary tumor, 16.8% gross total resection, 14.0% incomplete surgery, and 0.5% biopsy only. The cumulative complication rate was 20.3% and the surgery associated mortality rate was 1.1%. Image defined risk factors (IDRF) predicted the extent of resection. Patients with complete resection had a better local-progression-free survival (LPFS), event-free survival (EFS) and OS (overall survival) than the other groups. Subgroup analyses showed better EFS, LPFS and OS for patients with complete resection in INRG high-risk patients. Multivariable analyses revealed resection (complete vs. other), and MYCN (non-amplified vs. amplified) as independent prognostic factors for EFS, LPFS and OS.ConclusionsIn patients with localized neuroblastoma age 18xa0months or older, especially in INRG high-risk patients harboring MYCN amplification, extended surgery of the primary tumor site improved local control rate and survival with an acceptable risk of complications.


Molecular Oncology | 2016

Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.

Fakhera Ikram; Sandra Ackermann; Yvonne Kahlert; Ruth Volland; Frederik Roels; Anne Engesser; Falk Hertwig; Hayriye Kocak; Barbara Hero; Daniel Dreidax; Kai-Oliver Henrich; Frank Berthold; Peter Nürnberg; Frank Westermann; Matthias Fischer

Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5‐aza‐2′‐deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re‐expression of TFAP2B in IMR‐32 and SH‐EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR‐32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up‐regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down‐regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA‐induced neuronal differentiation of SH‐SY5Y and SK‐N‐BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma.


Cancer Cell | 2018

Sense-Antisense lncRNA Pair Encoded by Locus 6p22.3 Determines Neuroblastoma Susceptibility via the USP36-CHD7-SOX9 Regulatory Axis

Tanmoy Mondal; Prasanna Kumar Juvvuna; Agnete Kirkeby; Sanhita Mitra; Subazini Thankaswamy Kosalai; Larissa Traxler; Falk Hertwig; Sara Wernig-Zorc; Caroline Miranda; Lily Deland; Ruth Volland; Christoph Bartenhagen; Deniz Bartsch; Sashidhar Bandaru; Anne Engesser; Santhilal Subhash; Tommy Martinsson; Helena Carén; Levent M. Akyürek; Leo Kurian; Meena Kanduri; Maite Huarte; Per Kogner; Matthias Fischer; Chandrasekhar Kanduri

Trait-associated loci often map to genomic regions encoding long noncoding RNAs (lncRNAs), but the role of these lncRNAs in disease etiology is largely unexplored. We show that a pair of sense/antisense lncRNA (6p22lncRNAs) encoded by CASC15 and NBAT1 located at the neuroblastoma (NB) risk-associated 6p22.3 locus are tumor suppressors and show reduced expression in high-risk NBs. Loss of functional synergy between 6p22lncRNAs results in an undifferentiated state that is maintained by a gene-regulatory network, including SOX9 located on 17q, a region frequently gained in NB. 6p22lncRNAs regulate SOX9 expression by controlling CHD7 stability via modulating the cellular localization of USP36, encoded by another 17q gene. This regulatory nexus between 6p22.3 and 17q regions may lead to potential NB treatment strategies.

Collaboration


Dive into the Ruth Volland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benedikt Brors

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge