Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruthven N. A. H. Lewis is active.

Publication


Featured researches published by Ruthven N. A. H. Lewis.


Biophysical Journal | 1997

Calorimetric and Spectroscopic Studies of the Thermotropic Phase Behavior of the n-Saturated 1,2-Diacylphosphatidylglycerols

Yuan-Peng Zhang; Ruthven N. A. H. Lewis; Ronald N. McElhaney

The polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylglycerols (PGs) was studied by differential scanning calorimetry and Fourier transform infrared and 31P-nuclear magnetic resonance spectroscopy. When dispersed in aqueous media under physiologically relevant conditions, these compounds exhibit two thermotropic phase transitions that are structurally equivalent to the well-characterized pretransitons and gel/liquid-crystalline phase transitions exhibited by bilayers of the corresponding 1,2-diacyl phosphatidylcholines. Furthermore, when incubated at low temperatures, their gel phases spontaneously transform into one or more solid-like phases that appear to be highly ordered, quasicrystalline bilayers that are probably partially dehydrated. The quasicrystalline structures, which form upon short-term, low-temperature annealing of these lipids, are meta-stable with respect to more stable structures, to which they eventually transform upon prolonged low-temperature incubation. The rates of formation of the quasicrystalline phases of the PGs generally tend to decrease as hydrocarbon chain length increases, and PGs whose hydrocarbon chains contain an odd number of carbon atoms tend to be slower than those of neighboring even-numbered homologs. The calorimetric data also indicate that the quasicrystalline phases of these compounds become progressively less stable relative to both their gel and liquid-crystalline phases as the length of the hydrocarbon chain increases and that they decompose either to the liquid-crystalline phase (short- and medium-chain compounds) or to the normal gel phase (long-chain compounds) upon heating. The spectroscopic data indicate that although there is odd-even alternation in the structures of the quasicrystalline phases formed upon short-term low-temperature incubation of these compounds, the structural features of the stable quasicrystalline phases eventually formed are all similar. Furthermore, the degree of hydration and the nature of hydrogen bonding interactions in the headgroup and interfacial regions of these PG bilayers differ significantly from that observed in all other phospholipid bilayers studied so far. We suggest that many of the properties of PG bilayers can be rationalized by postulating that the glycerol moiety of the polar headgroup is directly involved in shielding the negative charges at the surface of the bilayer by means of hydration-like hydrogen bonding interactions with the phosphate moiety.


Biochimica et Biophysica Acta | 2009

The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes.

Ruthven N. A. H. Lewis; Ronald N. McElhaney

In this review article, we summarize the current state of biophysical knowledge concerning the phase behavior and organization of cardiolipin (CL) and CL-containing phospholipid bilayer model membranes. We first briefly consider the occurrence and distribution of CL in biological membranes and its probable biological functions therein. We next consider the unique chemical structure of the CL molecule and how this structure may determine its distinctive physical properties. We then consider in some detail the thermotropic phase behavior and organization of CL and CL-containing lipid model membranes as revealed by a variety of biophysical techniques. We also attempt to relate the chemical properties of CL to its function in the biological membranes in which it occurs. Finally, we point out the requirement for additional biophysical studies of both lipid model and biological membranes in order to increase our currently limited understanding of the relationship between CL structure and physical properties and CL function in biological membranes.


Biophysical Journal | 1993

Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines.

Ruthven N. A. H. Lewis; Ronald N. McElhaney

The polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines was investigated by differential scanning calorimetry, 31P-nuclear magnetic resonance, and Fourier transform infrared spectroscopy. Upon heating, aqueous dispersions of dried samples of the short- and medium-chain homologues (n < or = 17) exhibit single, highly energetic transitions from a dry, crystalline form to the fully hydrated, liquid-crystalline bilayer at temperatures higher than the lamellar gel-liquid-crystalline phase transition exhibited by fully hydrated samples. In contrast, the longer chain homologues (n > or = 18) first exhibit a transition from a dehydrated solid form to the hydrated L beta gel phase followed by the gel-liquid-crystalline phase transition normally observed with fully hydrated samples. The fully hydrated, aqueous dispersions of these lipids all exhibit reversible, fairly energetic gel-liquid-crystalline transitions at temperatures that are significantly higher than those of the corresponding phosphatidylcholines. In addition, at still higher temperatures, the longer chain members of this series (n > or = 16) exhibit weakly energetic transitions from the lamellar phase to an inverted nonlamellar phase. Upon appropriate incubation at low temperatures, aqueous dispersions of the shorter chain members of this homologous series (n < or = 16) form a highly ordered crystal-like phase that, upon heating, converts directly to the liquid-crystalline phase at the same temperature as do the aqueous dispersions of the dried lipid. The spectroscopic data indicate that unlike the n-saturated diacyl phosphatidylcholines, the stable crystal-like phases of this series of phosphatidylethanolamines describe an isostructural series in which the hydrocarbon chains are packed in an orthorhombic subcell and the headgroup and polar/apolar interfacial regions of the bilayer are effectively immobilized and substantially dehydrated. Our results suggest that many of the differences between the properties of these phosphatidylethanolamine bilayers and their phosphatidylcholine counterparts can be rationalized on the basis of stronger intermolecular interactions in the headgroup and interfacial regions of the phosphatidylethanolamine bilayers. These are probably the result of differences in the hydration and hydrogen bonding interactions involving the phosphorylethanolamine headgroup and moieties in the polar/apolar interfacial regions of phosphatidylethanolamine bilayers.


Chemistry and Physics of Lipids | 1998

THE STRUCTURE AND ORGANIZATION OF PHOSPHOLIPID BILAYERS AS REVEALED BY INFRARED SPECTROSCOPY

Ruthven N. A. H. Lewis; Ronald N. McElhaney

Abstract Fourier transform infrared (FTIR) spectroscopy is a powerful yet relatively inexpensive spectroscopic technique for studying the structure and organization of phospholipid bilayers. This technique yields information about all regions of the phospholipid molecule simultaneously without the necessity of introducing perturbing extrinsic probes. In this review we summarize some recent FTIR spectroscopic studies of the structure and organization of phospholipids in their lamellar liquid-crystalline, gel, and crystalline phases and show that interconversions between these phases can be readily monitored by this technique. We also demonstrate that this technique can yield valuable information about nonlamellar phospholipid phases as well. Finally, we point out that in principle FTIR spectroscopy is capable of yielding fairly high resolution structural and conformational information about phospholipid molecules in multi-molecular aggregates and give several examples of how this potential is beginning to be realized.


Biophysical Journal | 2000

Surface Charge Markedly Attenuates the Nonlamellar Phase-Forming Propensities of Lipid Bilayer Membranes: Calorimetric and 31P-Nuclear Magnetic Resonance Studies of Mixtures of Cationic, Anionic, and Zwitterionic Lipids

Ruthven N. A. H. Lewis; Ronald N. McElhaney

The lamellar/nonlamellar phase preferences of lipid model membranes composed of mixtures of several cationic lipids with various zwitterionic and anionic phospholipids were examined by a combination of differential scanning calorimetry and (31)P NMR spectroscopy. All of the cationic lipids utilized in this study form only lamellar phases in isolation. Mixtures of these cationic lipids with zwitterionic strongly lamellar phase-preferring lipids such as phosphatidylcholine form only the lamellar liquid-crystalline phase even at high temperatures, as expected. Moreover, mixtures of these cationic lipids with strongly nonlamellar phase-preferring zwitterionic lipids such as phosphatidylethanolamine exhibit a markedly reduced propensity to form inverted nonlamellar phases, again as expected. However, when mixed with anionic lipids such as phosphatidylserine, phosphatidylglycerol, cardiolipin, or phosphatidic acid, a marked enhancement of nonlamellar phase-forming propensity occurs, despite the fact both components of the mixture are nominally lamellar phase-preferring. An examination of the lamellar/nonlamellar phase transition temperatures and the nature of the nonlamellar phases formed, as a function of temperature and of the composition of the mixture, indicates that the propensity to form inverted nonlamellar phases is maximal in mixtures where the mean surface charge of the membrane surface approaches neutrality and decreases markedly with increases in the density of positive or negative charge at the membrane surface. Moreover, the onset temperatures of the reversed hexagonal phase rise more steeply than do those of the inverted cubic phase as the ratio of cationic and anionic lipids is varied, suggesting that the formation of inverted hexagonal phases is more sensitive to this surface charge effect. These results indicate that surface charge per se is a significant and effective modulator of the lamellar/nonlamellar phase preferences of membrane lipids and that charged group interactions at membrane surfaces may have a major role in regulating this particular membrane property.


Chemistry and Physics of Lipids | 2010

The effect of variations in phospholipid and sterol structure on the nature of lipid–sterol interactions in lipid bilayer model membranes

David A. Mannock; Ruthven N. A. H. Lewis; Todd McMullen; Ronald N. McElhaney

This review deals with the effect of variations in phospholipid and sterol structure on the nature and magnitude of lipid-sterol interactions in lipid bilayer model membranes. The first portion of the review covers the effect of Chol itself on the thermotropic phase behavior and organization of a variety of different glycero- and sphingolipid membrane lipid classes, varying in the structure and charge of their polar headgroups and in the length and structure of their fatty acyl chains. The second part of this review deals with the effect of variations in sterol structure on the thermotropic phase behavior and organization primarily of the well studied DPPC model membrane system. In the third section, we focus on some of the contributions of sterol functional group chemistry, molecular conformation and dynamics, to sterol-lipid interactions. Using those studies, we re-examine the results of recently published experimental and computer-modeling studies to provide a new more dynamic molecular interpretation of sterol-lipid interactions. We suggest that the established view of the rigid sterol ring system and extended alkyl side-chain obtained from physical studies of cholesterol-phospholipid mixtures may not apply in lipid mixtures differing in their sterol chemical structure.


Biochimica et Biophysica Acta | 1999

Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes

Elmar J. Prenner; Ruthven N. A. H. Lewis; Leslie H. Kondejewski; Robert S. Hodges; Ronald N. McElhaney

We have studied the effects of the antimicrobial peptide gramicidin S (GS) on the thermotropic phase behavior of large multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylethanolamine (DMPE) and dimyristoyl phosphatidylglycerol (DMPG) by high-sensitivity differential scanning calorimetry. We find that the effect of GS on the lamellar gel to liquid-crystalline phase transition of these phospholipids varies markedly with the structure and charge of their polar headgroups. Specifically, the presence of even large quantities of GS has essentially no effect on the main phase transition of zwitterionic DMPE vesicles, even after repeating cycling through the phase transition, unless these vesicles are exposed to high temperatures, after which a small reduction in the temperature, enthalpy and cooperativity of the gel to liquid-crystalline phase transitions is observed. Similarly, even large amounts of GS produce similar modest decreases in the temperature, enthalpy and cooperativity of the main phase transition of DMPC vesicles, although the pretransition is abolished at low peptide concentrations. However, exposure to high temperatures is not required for these effects of GS on DMPC bilayers to be manifested. In contrast, GS has a much greater effect on the thermotropic phase behavior of anionic DMPG vesicles, substantially reducing the temperature, enthalpy and cooperativity of the main phase transition at higher peptide concentrations, and abolishing the pretransition at lower peptide concentrations as compared to DMPC. Moreover, the relatively larger effects of GS on the thermotropic phase behavior of DMPG vesicles are also manifest without cycling through the phase transition or exposure to high temperatures. Furthermore, the addition of GS to DMPG vesicles protects the phospholipid molecules from the chemical hydrolysis induced by their repeated exposure to high temperatures. These results indicate that GS interacts more strongly with anionic than with zwitterionic phospholipid bilayers, probably because of the more favorable net attractive electrostatic interactions between the positively charged peptide and the negatively charged polar headgroup in such systems. Moreover, at comparable reduced temperatures, GS appears to interact more strongly with zwitterionic DMPC than with zwitterionic DMPE bilayers, probably because of the more fluid character of the former system. In addition, the general effects of GS on the thermotropic phase behavior of zwitterionic and anionic phospholipids suggest that it is located at the polar/apolar interface of liquid-crystalline bilayers, where it interacts primarily with the polar headgroup and glycerol-backbone regions of the phospholipid molecules and only secondarily with the lipid hydrocarbon chains. Finally, the considerable lipid specificity of GS interactions with phospholipid bilayers may prove useful in the design of peptide analogs with stronger interactions with microbial as opposed to eucaryotic membrane lipids.


Biochimica et Biophysica Acta | 1999

Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes.

Todd McMullen; Ruthven N. A. H. Lewis; Ronald N. McElhaney

We have examined the effects of cholesterol (Chol) on the thermotropic phase behavior and organization of aqueous dispersions of a homologous series of linear disaturated phosphatidylglycerols (PGs) by high-sensitivity differential scanning calorimetry and Fourier transform infrared and 31P NMR spectroscopy. We find that the incorporation of increasing quantities of Chol alters the temperature and progressively reduces the enthalpy and cooperativity of the gel-to-liquid-crystalline phase transition of the host PG bilayer. With dimyristoyl-PG:Chol mixtures, cooperative chain-melting phase transitions are completely or almost completely abolished at Chol concentrations near 50 mol%, whereas with the dipalmitoyl- and distearoyl-PG:Chol mixtures, cooperative hydrocarbon chain-melting phase transitions are still discernable at Chol concentrations near 50 mol%. We are also unable to detect the presence of significant populations of separate domains of the anhydrous or monohydrate forms of Chol in our binary mixtures, in contrast to previous reports. We ascribe the previously reported large scale formation of Chol crystallites to the fractional crystallization of the Chol and phospholipid phases during the removal of organic solvent from the binary mixture before the hydration of the sample. We further show that the direction and magnitude of the change in the phase transition temperature induced by Chol addition is dependent on the hydrocarbon chain length of the PG studied. This finding agrees with our previous results with phosphatidylcholine bilayers, where we found that Chol increases or decreases the phase transition temperature in a hydrophobic mismatch-dependent manner (Biochemistry 1993, 32:516-522), but is in contrast to our previous results for phosphatidylethanolamine (Biochim. Biophys. Acta 1999, 1416:119-234) and phosphatidylserine (Biophys. J. 2000, 79:2056-2065) bilayers, where no such hydrophobic mismatch-dependent effects were observed. We also show that the addition of Chol facilitates the formation of the lamellar crystalline phase in PG bilayers, as it does in phosphatidylethanolamine and phosphatidylserine bilayers, whereas the formation of such phases in phosphatidylcholine bilayers is inhibited by the presence of Chol. Moreover, the formation of the lamellar crystalline phase in PG bilayers at lower temperatures excludes Chol, resulting in an apparent Chol immiscibility in gel-state PG bilayers. We suggest that the magnitude of the effect of Chol on the thermotropic phase behavior of the host phospholipid bilayer, and its miscibility in phospholipids dispersions generally, depend on the strength of the attractive interactions between the polar headgroups and the hydrocarbon chains of the phospholipid molecule, and not on the charge of the polar headgroups per se.


Biophysical Journal | 2001

X-Ray Diffraction Structures of Some Phosphatidylethanolamine Lamellar and Inverted Hexagonal Phases*

Paul E. Harper; David A. Mannock; Ruthven N. A. H. Lewis; Ronald N. McElhaney; Sol M. Gruner

X-ray diffraction is used to solve the low-resolution structures of fully hydrated aqueous dispersions of seven different diacyl phosphatidylethanolamines (PEs) whose hydrocarbon chains have the same effective chain length but whose structures vary widely. Both the lower-temperature, liquid-crystalline lamellar (L(alpha)) and the higher-temperature, inverted hexagonal (H(II)) phase structures are solved, and the resultant internal dimensions (d-spacing, water layer thickness, average lipid length, and headgroup area at the lipid-water interface) of each phase are determined as a function of temperature. The magnitude of the L(alpha) and H(II) phase d-spacings on either side of the L(alpha)/H(II) phase transition temperature (T(h)) depends significantly on the structure of the PE hydrocarbon chains. The L(alpha) phase d-spacings range from 51.2 to 56.4 A, whereas those of the H(II) phase range from 74.9 to 82.7 A. These new results differ from our earlier measurements of these PEs (Lewis et al., Biochemistry, 28:541-548, 1989), which found near constant d-spacings of 52.5 and 77.0-78.0 A for the L(alpha) and H(II) phases, respectively. In both phases, the d-spacings decrease with increasing temperature independent of chain structure, but, in both phases, the rate of decrease in the L(alpha) phase is smaller than that in the H(II) phase. A detailed molecular description of the L(alpha)/H(II) phase transition in these PEs is also presented.


Biophysical Journal | 1994

Comparative differential scanning calorimetric and FTIR and 31P-NMR spectroscopic studies of the effects of cholesterol and androstenol on the thermotropic phase behavior and organization of phosphatidylcholine bilayers

Todd McMullen; Ruthven N. A. H. Lewis; Ronald N. McElhaney

We have investigated the comparative effects of the incorporation of increasing quantities of androstenol and cholesterol on the thermotropic phase behavior of aqueous dispersions of members of a homologous series of linear saturated diacyl PCs1 using high sensitivity DSC. We have also employed FTIR and 31P-NMR spectroscopy to study the comparative effects of androstenol and cholesterol incorporation on the organization of the host PC bilayer in both the gel and liquid-crystalline states. The effects of androstenol and cholesterol incorporation on the thermotropic phase behavior of shorter chain PCs like 14:0 PC are generally similar but not identical. The incorporation of either sterol progressively decreases the temperature and enthalpy, but not the cooperativity, of the pretransition and completely abolishes it at sterol concentrations above 5 mol%. Moreover, at sterol concentrations of 1 to 20-25 mol%, both androstenol and cholesterol incorporation produce DSC endotherms consisting of superimposed sharp and broad components, the former due to the hydrocarbon chain melting of sterol-poor and the latter to the melting of sterol-rich 14:0 PC domains. The temperature and cooperativity of the sharp component are reduced slightly with increasing concentration of androstenol or cholesterol, and the enthalpy of the sharp component decreases progressively and becomes zero at 20-25 mol% sterol. As well, at cholesterol or androstenol concentrations above 20-25 mol%, the enthalpy of the broad component also decreases linearly with increasing sterol incorporation and becomes zero at sterol levels of about 50 mol%. However, whereas cholesterol incorporation progressively increases the temperature of the broad component of the DSC endotherm, androstenol incorporation decreases the temperature of this component. In contrast, the effects of androstenol and cholesterol incorporation on the thermotropic phase behavior of the intermediate and longer chain PCs studied here are considerably different. Although the incorporation of cholesterol increases the main phase transition temperature of 16:0 PC slightly and decreases the phase transition of 18:0 PC and 21:0 PC, androstenol incorporation decreases the main phase transition temperatures of all three PCs rather markedly. Moreover, androstenol is less effective in reducing the enthalpy and cooperativity of the broad component of the DSC endotherm of 16:0 PC and especially 18:0 PC bilayers in comparison to cholesterol. Androstenol incorporation (> 5 mol%) also results in the appearance of a second, low temperature endotherm in the DSC traces of the intermediate and longer chain PC dispersions that is not observed in similar cholesterol/PC dispersions. FTIR and 31P-NMR results suggest that this endotherm arises from a temperature-induced dissolution of androstenol in the gel phase PC bilayers. This second endotherm occurs at lower androstenol concentrations and increases in area at a given androstenol level as the chain length of the host PC bilayer increases. We ascribe the increasing immiscibility of androstenol in both the gel and liquid-crystalline states of PC bilayers of increasing thickness to an increasing degree of hydrophobic mismatch between the androstenol molecule and the host phospholipid bilayer.

Collaboration


Dive into the Ruthven N. A. H. Lewis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert S. Hodges

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Liu

University of Alberta

View shared research outputs
Researchain Logo
Decentralizing Knowledge