Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruti Parvari is active.

Publication


Featured researches published by Ruti Parvari.


Nature Genetics | 2002

Mutation of TBCE causes hypoparathyroidism- retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome

Ruti Parvari; Eli Hershkovitz; Nili Grossman; Rafael Gorodischer; Bart Loeys; Alexandra Zecic; Geert Mortier; Simon G. Gregory; Reuven Sharony; Marios Kambouris; Nadia A. Sakati; Brian F. Meyer; Aida I. Al Aqeel; Abdul Karim Al Humaidan; Fatma Al Zanhrani; Abdulrahman Al Swaid; Johara Al Othman; George A. Diaz; Rory Weiner; K. Tahseen S. Khan; Ronald E. Gordon; Bruce D. Gelb

The syndrome of congenital hypoparathyroidism, mental retardation, facial dysmorphism and extreme growth failure (HRD or Sanjad–Sakati syndrome; OMIM 241410) is an autosomal recessive disorder reported almost exclusively in Middle Eastern populations1,2,3. A similar syndrome with the additional features of osteosclerosis and recurrent bacterial infections has been classified as autosomal recessive Kenny–Caffey syndrome4 (AR-KCS; OMIM 244460). Both traits have previously been mapped to chromosome 1q43–44 (refs 5,6) and, despite the observed clinical variability, share an ancestral haplotype, suggesting a common founder mutation7. We describe refinement of the critical region to an interval of roughly 230 kb and identification of deletion and truncation mutations of TBCE in affected individuals. The gene TBCE encodes one of several chaperone proteins required for the proper folding of α-tubulin subunits and the formation of α–β-tubulin heterodimers. Analysis of diseased fibroblasts and lymphoblastoid cells showed lower microtubule density at the microtubule-organizing center (MTOC) and perturbed microtubule polarity in diseased cells. Immunofluorescence and ultrastructural studies showed disturbances in subcellular organelles that require microtubules for membrane trafficking, such as the Golgi and late endosomal compartments. These findings demonstrate that HRD and AR-KCS are chaperone diseases caused by a genetic defect in the tubulin assembly pathway, and establish a potential connection between tubulin physiology and the development of the parathyroid.The syndrome of congenital hypoparathyroidism, mental retardation, facial dysmorphism and extreme growth failure (HRD or Sanjad–Sakati syndrome; OMIM 241410) is an autosomal recessive disorder reported almost exclusively in Middle Eastern populations. A similar syndrome with the additional features of osteosclerosis and recurrent bacterial infections has been classified as autosomal recessive Kenny–Caffey syndrome (AR-KCS; OMIM 244460). Both traits have previously been mapped to chromosome 1q43–44 (refs 5,6) and, despite the observed clinical variability, share an ancestral haplotype, suggesting a common founder mutation. We describe refinement of the critical region to an interval of roughly 230 kb and identification of deletion and truncation mutations of TBCE in affected individuals. The gene TBCE encodes one of several chaperone proteins required for the proper folding of α-tubulin subunits and the formation of α–β-tubulin heterodimers. Analysis of diseased fibroblasts and lymphoblastoid cells showed lower microtubule density at the microtubule-organizing center (MTOC) and perturbed microtubule polarity in diseased cells. Immunofluorescence and ultrastructural studies showed disturbances in subcellular organelles that require microtubules for membrane trafficking, such as the Golgi and late endosomal compartments. These findings demonstrate that HRD and AR-KCS are chaperone diseases caused by a genetic defect in the tubulin assembly pathway, and establish a potential connection between tubulin physiology and the development of the parathyroid.


American Journal of Human Genetics | 2010

Autosomal-Recessive Hypophosphatemic Rickets Is Associated with an Inactivation Mutation in the ENPP1 Gene

Varda Levy-Litan; Eli Hershkovitz; Luba Avizov; Neta Leventhal; Dani Bercovich; Vered Chalifa-Caspi; Esther Manor; Sophia Buriakovsky; Yair Hadad; James W. Goding; Ruti Parvari

Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1.


Current Molecular Medicine | 2002

The variable presentations of glycogen storage disease type IV: a review of clinical, enzymatic and molecular studies.

Shimon W. Moses; Ruti Parvari

Glycogen storage disease type IV (GSD-IV), also known as Andersen disease or amylopectinosis (MIM 23250), is a rare autosomal recessive disorder caused by a deficiency of glycogen branching enzyme (GBE) leading to the accumulation of amylopectin-like structures in affected tissues. The disease is extremely heterogeneous in terms of tissue involvement, age of onset and clinical manifestations. The human GBE cDNA is approximately 3-kb in length and encodes a 702-amino acid protein. The GBE amino acid sequence shows a high degree of conservation throughout species. The human GBE gene is located on chromosome 3p14 and consists of 16 exons spanning at least 118 kb of chromosomal DNA. Clinically the classic Andersen disease is a rapidly progressive disorder leading to terminal liver failure unless liver transplantation is performed. Several mutations have been reported in the GBE gene in patients with classic phenotype. Mutations in the GBE gene have also been identified in patients with the milder non-progressive hepatic form of the disease. Several other variants of GSD-IV have been reported: a variant with multi-system involvement including skeletal and cardiac muscle, nerve and liver; a juvenile polysaccharidosis with multi-system involvement but normal GBE activity; and the fatal neonatal neuromuscular form associated with a splice site mutation in the GBE gene. Other presentations include cardiomyopathy, arthrogryposis and even hydrops fetalis. Polyglucosan body disease, characterized by widespread upper and lower motor neuron lesions, can present with or without GBE deficiency indicating that different biochemical defects could result in an identical phenotype. It is evident that this disease exists in multiple forms with enzymatic and molecular heterogeneity unparalleled in the other types of glycogen storage diseases.


American Journal of Human Genetics | 2011

Primary Ciliary Dyskinesia Caused by Homozygous Mutation in DNAL1, Encoding Dynein Light Chain 1

Masha Mazor; Soliman Alkrinawi; Vered Chalifa-Caspi; Esther Manor; Val C. Sheffield; Micha Aviram; Ruti Parvari

In primary ciliary dyskinesia (PCD), genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility. The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Although it has long been suspected that mutations in DNAL1 encoding the ODA light chain1 might cause PCD such mutations were not found. We demonstrate here that a homozygous point mutation in this gene is associated with PCD with absent or markedly shortened ODA. The mutation (NM_031427.3: c.449A>G; p.Asn150Ser) changes the Asn at position150, which is critical for the proper tight turn between the β strand and the α helix of the leucine-rich repeat in the hydrophobic face that connects to the dynein heavy chain. The mutation reduces the stability of the axonemal dynein light chain 1 and damages its interactions with dynein heavy chain and with tubulin. This study adds another important component to understanding the types of mutations that cause PCD and provides clinical information regarding a specific mutation in a gene not yet known to be associated with PCD.


Human Mutation | 2010

Congenital Insensitivity to Pain: Novel SCN9A Missense and In-Frame Deletion Mutations

James J. Cox; Jony Sheynin; Zamir Shorer; Frank Reimann; Adeline K. Nicholas; Lorena Zubović; Marco Baralle; Elizabeth Wraige; Esther Manor; Jacov Levy; C. Geoffery Woods; Ruti Parvari

SCN9Aencodes the voltage‐gated sodium channel Nav1.7, a protein highly expressed in pain‐sensing neurons. Mutations in SCN9A cause three human pain disorders: bi‐allelic loss of function mutations result in Channelopathy‐associated Insensitivity to Pain (CIP), whereas activating mutations cause severe episodic pain in Paroxysmal Extreme Pain Disorder (PEPD) and Primary Erythermalgia (PE). To date, all mutations in SCN9A that cause a complete inability to experience pain are protein truncating and presumably lead to no protein being produced. Here, we describe the identification and functional characterization of two novel non‐truncating mutations in families with CIP: a homozygously‐inherited missense mutation found in a consanguineous Israeli Bedouin family (Nav1.7‐R896Q) and a five amino acid in‐frame deletion found in a sporadic compound heterozygote (Nav1.7‐ΔR1370‐L1374). Both of these mutations map to the pore region of the Nav1.7 sodium channel. Using transient transfection of PC12 cells we found a significant reduction in membrane localization of the mutant protein compared to the wild type. Furthermore, voltage clamp experiments of mutant‐transfected HEK293 cells show a complete loss of function of the sodium channel, consistent with the absence of pain phenotype. In summary, this study has identified critical amino acids needed for the normal subcellular localization and function of Nav1.7.


European Journal of Human Genetics | 2010

Familial neonatal isolated cardiomyopathy caused by a mutation in the flavoprotein subunit of succinate dehydrogenase

Aviva Levitas; Emad Muhammad; Gali Harel; Ann Saada; Vered Chalifa Caspi; Esther Manor; John C. Beck; Val C. Sheffield; Ruti Parvari

Cardiomyopathies are common disorders resulting in heart failure; the most frequent form is dilated cardiomyopathy (DCM), which is characterized by dilatation of the left or both ventricles and impaired systolic function. DCM causes considerable morbidity and mortality, and is one of the major causes of sudden cardiac death. Although about one-third of patients are reported to have a genetic form of DCM, reported mutations explain only a minority of familial DCM. Moreover, the recessive neonatal isolated form of DCM has rarely been associated with a mutation. In this study, we present the association of a mutation in the SDHA gene with recessive neonatal isolated DCM in 15 patients of two large consanguineous Bedouin families. The cardiomyopathy is presumably caused by the significant tissue-specific reduction in SDH enzymatic activity in the heart muscle, whereas substantial activity is retained in the skeletal muscle and lymphoblastoid cells. Notably, the same mutation was previously reported to cause a multisystemic failure leading to neonatal death and Leighs syndrome. This study contributes to the molecular characterization of a severe form of neonatal cardiomyopathy and highlights extreme phenotypic variability resulting from a specific missense mutation in a nuclear gene encoding a protein of the mitochondrial respiratory chain.


Journal of Bone and Joint Surgery-british Volume | 2002

Congenital insensitivity to pain: ORTHOPAEDIC MANIFESTATIONS

E. Bar-On; D. Weigl; Ruti Parvari; K. Katz; R. Weitz; T. Steinberg

We reviewed 13 patients with congenital insensitivity to pain. A quantitative sweat test was carried out in five and an intradermal histamine test in ten. DNA examination showed specific mutations in four patients. There were three clinical presentations: type A, in which multiple infections occurred (five patients); type B, with fractures, growth disturbances and avascular necrosis (three patients); and type C, with Charcot arthropathies and joint dislocations, as well as fractures and infections (five patients, four with mental retardation). Patient education, shoeware and periods of non-weight-bearing are important in the prevention and early treatment of decubitus ulcers. The differentiation between fractures and infections should be based on aspiration and cultures to prevent unnecessary surgery. Established infections should be treated by wide surgical debridement. Deformities can be managed by corrective osteotomies, and shortening by shoe raises or epiphysiodesis. Joint dislocations are best treated conservatively.


American Journal of Human Genetics | 1998

Homozygosity and linkage-disequilibrium mapping of the syndrome of congenital hypoparathyroidism, growth and mental retardation, and dysmorphism to a 1-cM interval on chromosome 1q42-43

Ruti Parvari; Eli Hershkovitz; Adam B. Kanis; Rafael Gorodischer; Shlomit Shalitin; Val C. Sheffield; Rivka Carmi

The syndrome of hypoparathyroidism associated with growth retardation, developmental delay, and dysmorphism (HRD) is a newly described, autosomal recessive, congenital disorder with severe, often fatal consequences. Since the syndrome is very rare, with all parents of affected individuals being consanguineous, it is presumed to be caused by homozygous inheritance of a single recessive mutation from a common ancestor. To localize the HRD gene, we performed a genomewide screen using DNA pooling and homozygosity mapping for apparently unlinked kindreds. Analysis of a panel of 359 highly polymorphic markers revealed linkage to D1S235. The maximum LOD score obtained was 4.11 at a recombination fraction of 0. Analysis of three additional markers-GGAA6F06, D1S2678, and D1S179-in a 2-cM interval around D1S235 resulted in LOD scores >3. Analysis of additional chromosome 1 markers revealed evidence of genetic linkage disequilibrium and place the HRD locus within an approximately 1-cM interval defined by D1S1540 and D1S2678 on chromosome 1q42-43.


Human Molecular Genetics | 2013

Congenital Myopathy is Caused by Mutation of HACD1

Emad Muhammad; Orit Reish; Yusuke Ohno; Todd E. Scheetz; Adam P. DeLuca; Charles Searby; Miriam Regev; Lilach Benyamini; Yakov Fellig; Akio Kihara; Val C. Sheffield; Ruti Parvari

Congenital myopathies are heterogeneous inherited diseases of muscle characterized by a range of distinctive histologic abnormalities. We have studied a consanguineous family with congenital myopathy. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous non-sense mutation in 3-hydroxyacyl-CoA dehydratase 1 (HACD1) in affected individuals. The mutation results in non-sense mediated decay of the HACD1 mRNA to 31% of control levels in patient muscle and completely abrogates the enzymatic activity of dehydration of 3-hydroxyacyl-CoA, the third step in the elongation of very long-chain fatty acids (VLCFAs). We describe clinical findings correlated with a deleterious mutation in a gene not previously known to be associated with congenital myopathy in humans. We suggest that the mutation in the HACD1 gene causes a reduction in the synthesis of VLCFAs, which are components of membrane lipids and participants in physiological processes, leading to congenital myopathy. These data indicate that HACD1 is necessary for muscle function.


Journal of the Neurological Sciences | 2009

Huntington disease in subjects from an Israeli Karaite community carrying alleles of intermediate and expanded CAG repeats in the HTT gene: Huntington disease or phenocopy?

Yuval O. Herishanu; Ruti Parvari; Yaakov Pollack; Ilan Shelef; Batia Marom; Tiziana Martino; Milena Cannella; Ferdinando Squitieri

We report a cluster of patients from a Karaite Jew community with a movement disorder suggestive of Huntington disease (HD), in some cases associated with repeat lengths below the edge of 36 CAG repeats. The study describes the clinical and genetic features of four patients who were followed over several years. Patients belonged to an inbred family in whom progressive chorea, manifesting predominantly with dystonia and cerebellar features, developed during middle age. Although severe psychiatric symptoms ultimately developed in two of the four patients, cognitive function remained reasonably well preserved in all of them even after several disease years. Moderate cognitive deficits were limited to the visuomotor organization and abstract thinking subtests in three of the four patients. Qualitative brain imaging showed atrophy of brain predominantly involving cortex and cerebellum. Genetic testing revealed a variable mutation penetrance among family members, some affected members showing an upper allele size ranging from 34 to 49, whereas others remained unaffected despite the presence of the full mutation beyond 40 CAG repeats. Co-morbidity with recessive hereditary inclusion body myopathy was found in two subjects from one family. Although the main diagnosis of HD remains to be confirmed by further neuropathological studies, these cases may suggest that HD could manifest with as few as 34 CAG repeats, in some geographic areas, the disease phenotype most probably being influenced by additional, as yet unidentified, genes.

Collaboration


Dive into the Ruti Parvari's collaboration.

Top Co-Authors

Avatar

Eli Hershkovitz

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Shimon W. Moses

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Val C. Sheffield

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Neta Loewenthal

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Rivka Carmi

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Emad Muhammad

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Esther Manor

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Aviva Levitas

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Alon Haim

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Rafael Gorodischer

Ben-Gurion University of the Negev

View shared research outputs
Researchain Logo
Decentralizing Knowledge