Ruvishika S. Jayawardena
Mae Fah Luang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruvishika S. Jayawardena.
Fungal Diversity | 2013
Kevin D. Hyde; E. B. Gareth Jones; Jian Kui Liu; Hiran A. Ariyawansa; Eric Boehm; Saranyaphat Boonmee; Uwe Braun; Putarak Chomnunti; Pedro W. Crous; Dong Qin Dai; Paul Diederich; Asha J. Dissanayake; Mingkhuan Doilom; Francesco Doveri; Singang Hongsanan; Ruvishika S. Jayawardena; James D. Lawrey; Yan Mei Li; Yong Xiang Liu; Robert Lücking; Jutamart Monkai; Lucia Muggia; Matthew P. Nelsen; Ka-Lai Pang; Rungtiwa Phookamsak; Indunil C. Senanayake; Carol A. Shearer; Satinee Suetrong; Kazuaki Tanaka; Kasun M. Thambugala
Dothideomycetes comprise a highly diverse range of fungi characterized mainly by asci with two wall layers (bitunicate asci) and often with fissitunicate dehiscence. Many species are saprobes, with many asexual states comprising important plant pathogens. They are also endophytes, epiphytes, fungicolous, lichenized, or lichenicolous fungi. They occur in terrestrial, freshwater and marine habitats in almost every part of the world. We accept 105 families in Dothideomycetes with the new families Anteagloniaceae, Bambusicolaceae, Biatriosporaceae, Lichenoconiaceae, Muyocopronaceae, Paranectriellaceae, Roussoellaceae, Salsugineaceae, Seynesiopeltidaceae and Thyridariaceae introduced in this paper. Each family is provided with a description and notes, including asexual and asexual states, and if more than one genus is included, the type genus is also characterized. Each family is provided with at least one figure-plate, usually illustrating the type genus, a list of accepted genera, including asexual genera, and a key to these genera. A phylogenetic tree based on four gene combined analysis add support for 64 of the families and 22 orders, including the novel orders, Dyfrolomycetales, Lichenoconiales, Lichenotheliales, Monoblastiales, Natipusillales, Phaeotrichales and Strigulales. The paper is expected to provide a working document on Dothideomycetes which can be modified as new data comes to light. It is hoped that by illustrating types we provide stimulation and interest so that more work is carried out in this remarkable group of fungi.
Fungal Diversity | 2015
Subashini C. Jayasiri; Kevin D. Hyde; Hiran A. Ariyawansa; Jayarama D. Bhat; Bart Buyck; Lei Cai; Yu-Cheng Dai; Kamel A. Abd-Elsalam; Damien Ertz; Iman Hidayat; Rajesh Jeewon; E. B. Gareth Jones; Ali H. Bahkali; Samantha C. Karunarathna; Jian-Kui Liu; J. Jennifer Luangsa-ard; H. Thorsten Lumbsch; Sajeewa S. N. Maharachchikumbura; Eric H. C. McKenzie; Jean-Marc Moncalvo; Masoomeh Ghobad-Nejhad; Henrik R. Nilsson; Ka-Lai Pang; O. L. Pereira; Alan J. L. Phillips; Olivier Raspé; Adam W. Rollins; Andrea I. Romero; Javier Etayo; Faruk Selçuk
Taxonomic names are key links between various databases that store information on different organisms. Several global fungal nomenclural and taxonomic databases (notably Index Fungorum, Species Fungorum and MycoBank) can be sourced to find taxonomic details about fungi, while DNA sequence data can be sourced from NCBI, EBI and UNITE databases. Although the sequence data may be linked to a name, the quality of the metadata is variable and generally there is no corresponding link to images, descriptions or herbarium material. There is generally no way to establish the accuracy of the names in these genomic databases, other than whether the submission is from a reputable source. To tackle this problem, a new database (FacesofFungi), accessible at www.facesoffungi.org (FoF) has been established. This fungal database allows deposition of taxonomic data, phenotypic details and other useful data, which will enhance our current taxonomic understanding and ultimately enable mycologists to gain better and updated insights into the current fungal classification system. In addition, the database will also allow access to comprehensive metadata including descriptions of voucher and type specimens. This database is user-friendly, providing links and easy access between taxonomic ranks, with the classification system based primarily on molecular data (from the literature and via updated web-based phylogenetic trees), and to a lesser extent on morphological data when molecular data are unavailable. In FoF species are not only linked to the closest phylogenetic representatives, but also relevant data is provided, wherever available, on various applied aspects, such as ecological, industrial, quarantine and chemical uses. The data include the three main fungal groups (Ascomycota, Basidiomycota, Basal fungi) and fungus-like organisms. The FoF webpage is an output funded by the Mushroom Research Foundation which is an NGO with seven directors with mycological expertise. The webpage has 76 curators, and with the help of these specialists, FoF will provide an updated natural classification of the fungi, with illustrated accounts of species linked to molecular data. The present paper introduces the FoF database to the scientific community and briefly reviews some of the problems associated with classification and identification of the main fungal groups. The structure and use of the database is then explained. We would like to invite all mycologists to contribute to these web pages.
Fungal Diversity | 2014
Nalin N. Wijayawardene; Pedro W. Crous; Paul M. Kirk; David L. Hawksworth; Saranyaphat Boonmee; Uwe Braun; Dong Qin Dai; Melvina J. D’souza; Paul Diederich; Asha J. Dissanayake; Mingkhuan Doilom; Singang Hongsanan; E. B. Gareth Jones; Johannes Z. Groenewald; Ruvishika S. Jayawardena; James D. Lawrey; Jian Kui Liu; Robert Lücking; Hugo Madrid; Dimuthu S. Manamgoda; Lucia Muggia; Matthew P. Nelsen; Rungtiwa Phookamsak; Satinee Suetrong; Kazuaki Tanaka; Kasun M. Thambugala; Dhanushka N. Wanasinghe; Saowanee Wikee; Ying Zhang; André Aptroot
Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and non-pleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data.
Fungal Diversity | 2014
Kevin D. Hyde; R. Henrik Nilsson; S. Aisyah Alias; Hiran A. Ariyawansa; Jaime E. Blair; Lei Cai; Arthur W.A.M. de Cock; Asha J. Dissanayake; Sally L. Glockling; Ishani D. Goonasekara; Michał Gorczak; Matthias Hahn; Ruvishika S. Jayawardena; Jan A. L. van Kan; Matthew H. Laurence; C. André Lévesque; Xinghong Li; Jian-Kui Liu; Sajeewa S. N. Maharachchikumbura; Dimuthu S. Manamgoda; Frank N. Martin; Eric H. C. McKenzie; Alistair R. McTaggart; Peter E. Mortimer; Prakash V. R. Nair; Julia Pawłowska; Tara L. Rintoul; Roger G. Shivas; Christoffel F. J. Spies; Brett A. Summerell
Many fungi are pathogenic on plants and cause significant damage in agriculture and forestry. They are also part of the natural ecosystem and may play a role in regulating plant numbers/density. Morphological identification and analysis of plant pathogenic fungi, while important, is often hampered by the scarcity of discriminatory taxonomic characters and the endophytic or inconspicuous nature of these fungi. Molecular (DNA sequence) data for plant pathogenic fungi have emerged as key information for diagnostic and classification studies, although hampered in part by non-standard laboratory practices and analytical methods. To facilitate current and future research, this study provides phylogenetic synopses for 25 groups of plant pathogenic fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota, using recent molecular data, up-to-date names, and the latest taxonomic insights. Lineage-specific laboratory protocols together with advice on their application, as well as general observations, are also provided. We hope to maintain updated backbone trees of these fungal lineages over time and to publish them jointly as new data emerge. Researchers of plant pathogenic fungi not covered by the present study are invited to join this future effort. Bipolaris, Botryosphaeriaceae, Botryosphaeria, Botrytis, Choanephora, Colletotrichum, Curvularia, Diaporthe, Diplodia, Dothiorella, Fusarium, Gilbertella, Lasiodiplodia, Mucor, Neofusicoccum, Pestalotiopsis, Phyllosticta, Phytophthora, Puccinia, Pyrenophora, Pythium, Rhizopus, Stagonosporopsis, Ustilago and Verticillium are dealt with in this paper.
Fungal Diversity | 2015
Sajeewa S. N. Maharachchikumbura; Kevin D. Hyde; E. B. Gareth Jones; Eric H. C. McKenzie; Shi-Ke Huang; Mohamed A. Abdel-Wahab; Dinushani A. Daranagama; Monika C. Dayarathne; Melvina J. D’souza; Ishani D. Goonasekara; Sinang Hongsanan; Ruvishika S. Jayawardena; Paul M. Kirk; Sirinapa Konta; Jian-Kui Liu; Zuo-Yi Liu; Chada Norphanphoun; Ka-Lai Pang; Rekhani H. Perera; Indunil C. Senanayake; Qiu-Ju Shang; Belle Damodara Shenoy; Yuan-Pin Xiao; Ali H. Bahkali; Ji-Chuan Kang; Sayanh Somrothipol; Satinee Suetrong; Ting-Chi Wen; Jianchu Xu
Sordariomycetes is one of the largest classes of Ascomycota and is characterised by perithecial ascomata and inoperculate unitunicate asci. The class includes many important plant pathogens, as well as endophytes, saprobes, epiphytes, and fungicolous, lichenized or lichenicolous taxa. The class includes freshwater, marine and terrestrial taxa and has a worldwide distribution. This paper provides an updated outline of the Sordariomycetes and a backbone tree incorporating asexual and sexual genera in the class. Based on phylogeny and morphology we introduced three subclasses; Diaporthomycetidae, Lulworthiomycetidae and Meliolomycetidae and five orders; Amplistromatales, Annulatascales, Falcocladiales, Jobellisiales and Togniniales. The outline is based on literature to the end of 2014 and the backbone tree published in this paper. Notes for 397 taxa with information, such as new family and genera novelties, novel molecular data published since the Outline of Ascomycota 2009, and new links between sexual and asexual genera and thus synonymies, are provided. The Sordariomycetes now comprises six subclasses, 28 orders, 90 families and 1344 genera. In addition a list of 829 genera with uncertain placement in Sordariomycetes is also provided.
Fungal Diversity | 2014
Hiran A. Ariyawansa; David L. Hawksworth; Kevin D. Hyde; E. B. Gareth Jones; Sajeewa S. N. Maharachchikumbura; Dimuthu S. Manamgoda; Kasun M. Thambugala; Dhanushka Udayanga; Erio Camporesi; Anupama Daranagama; Ruvishika S. Jayawardena; Jian-Kui Liu; Eric H. C. McKenzie; Rungtiwa Phookamsak; Indunil C. Senanayake; Roger G. Shivas; Qing Tian; Jianchu Xu
A review of phylogenetic studies carried out together with morphological ones shows that a major problem with most early studies is that they concentrated on techniques and used material or strains of fungi that in most cases were not carefully reference, and in a worrying number of cases wrongly named. Most classical species, particularly of microfungi, are not represented by adequate type material, or other authoritatively identified cultures or specimens, that can serve as DNA sources for phylogenetic study, or for developing robust identification systems. Natural classifications of fungi therefore suffer from the lack of reference strains in resultant phylogenetic trees. In some cases, epitypification and neotypification can solve this problem and these tools are increasingly used to resolve taxonomic confusion and stabilize the understanding of species, genera, families, or orders of fungi. This manuscript discusses epitypification and neotypification, describes how to epitypify or neotypify species and examines the importance of this process. A set of guidelines for epitypification is presented. Examples where taxa have been epitypified are presented and the benefits and problems of epitypification are discussed. As examples of epitypification, or to provide reference specimens, a new epitype is designated for Paraphaeosphaeria michotii and reference specimens are provided for Astrosphaeriella stellata, A. bakeriana, Phaeosphaeria elongata, Ophiobolus cirsii, and O. erythrosporus. In this way we demonstrate how to epitypify taxa and its importance, and also illustrate the value of proposing reference specimens if epitypification is not advisable. Although we provided guidelines for epitypification, the decision to epitypify or not lies with the author, who should have experience of the fungus concerned. This responsibility is to be taken seriously, as once a later typification is made, it may not be possible to undo that, particularly in the case of epitypes, without using the lengthy and tedious formal conservation and rejection processes.
Fungal Diversity | 2014
R. Henrik Nilsson; Kevin D. Hyde; Julia Pawłowska; Martin Ryberg; Leho Tedersoo; Anders Bjørnsgard Aas; Siti Aisyah Alias; Artur Alves; Cajsa Lisa Anderson; Alexandre Antonelli; A. Elizabeth Arnold; Barbara Bahnmann; Mohammad Bahram; Johan Bengtsson-Palme; Anna Berlin; Sara Branco; Putarak Chomnunti; Asha J. Dissanayake; Rein Drenkhan; Hanna Friberg; Tobias Guldberg Frøslev; Bettina Halwachs; Martin Hartmann; Béatrice Henricot; Ruvishika S. Jayawardena; Ari Jumpponen; Håvard Kauserud; Sonja Koskela; Tomasz Kulik; Kare Liimatainen
SummaryPlant pathogenic fungi are a large and diverse assemblage of eukaryotes with substantial impacts on natural ecosystems and human endeavours. These taxa often have complex and poorly understood life cycles, lack observable, discriminatory morphological characters, and may not be amenable to in vitro culturing. As a result, species identification is frequently difficult. Molecular (DNA sequence) data have emerged as crucial information for the taxonomic identification of plant pathogenic fungi, with the nuclear ribosomal internal transcribed spacer (ITS) region being the most popular marker. However, international nucleotide sequence databases are accumulating numerous sequences of compromised or low-resolution taxonomic annotations and substandard technical quality, making their use in the molecular identification of plant pathogenic fungi problematic. Here we report on a concerted effort to identify high-quality reference sequences for various plant pathogenic fungi and to re-annotate incorrectly or insufficiently annotated public ITS sequences from these fungal lineages. A third objective was to enrich the sequences with geographical and ecological metadata. The results – a total of 31,954 changes – are incorporated in and made available through the UNITE database for molecular identification of fungi (http://unite.ut.ee), including standalone FASTA files of sequence data for local BLAST searches, use in the next-generation sequencing analysis platforms QIIME and mothur, and related applications. The present initiative is just a beginning to cover the wide spectrum of plant pathogenic fungi, and we invite all researchers with pertinent expertise to join the annotation effort.
Fungal Diversity | 2016
Sajeewa S. N. Maharachchikumbura; Kevin D. Hyde; E. B. Gareth Jones; Eric H. C. McKenzie; Jayarama D. Bhat; Monika C. Dayarathne; Shi Ke Huang; Chada Norphanphoun; Indunil C. Senanayake; Rekhani H. Perera; Qiu Ju Shang; Yuan-Pin Xiao; Melvina J. D’souza; Sinang Hongsanan; Ruvishika S. Jayawardena; Dinushani A. Daranagama; Sirinapa Konta; Ishani D. Goonasekara; Wen Ying Zhuang; Rajesh Jeewon; Alan J. L. Phillips; Mohamed A. Abdel-Wahab; Abdullah M. Al-Sadi; Ali H. Bahkali; Saranyaphat Boonmee; Nattawut Boonyuen; Ratchadawan Cheewangkoon; Asha J. Dissanayake; Ji-Chuan Kang; Qi Rui Li
Sordariomycetes is one of the largest classes of Ascomycota that comprises a highly diverse range of fungi characterized mainly by perithecial ascomata and inoperculate unitunicate asci. The class includes many important plant pathogens, as well as endophytes, saprobes, epiphytes, coprophilous and fungicolous, lichenized or lichenicolous taxa. They occur in terrestrial, freshwater and marine habitats worldwide. This paper reviews the 107 families of the class Sordariomycetes and provides a modified backbone tree based on phylogenetic analysis of four combined loci, with a maximum five representative taxa from each family, where available. This paper brings together for the first time, since Barrs’ 1990 Prodromus, descriptions, notes on the history, and plates or illustrations of type or representative taxa of each family, a list of accepted genera, including asexual genera and a key to these taxa of Sordariomycetes. Delineation of taxa is supported where possible by molecular data. The outline is based on literature to the end of 2015 and the Sordariomycetes now comprises six subclasses, 32 orders, 105 families and 1331 genera. The family Obryzaceae and Pleurotremataceae are excluded from the class.
Fungal Diversity | 2015
Hiran A. Ariyawansa; Kasun M. Thambugala; Dimuthu S. Manamgoda; Ruvishika S. Jayawardena; Erio Camporesi; Saranyaphat Boonmee; Dhanushka N. Wanasinghe; Rungtiwa Phookamsak; Singang Hongsanan; Chonticha Singtripop; Ekachai Chukeatirote; Ji-Chuan Kang; E. B. Gareth Jones; Kevin D. Hyde
The family Pleosporaceae includes numerous saprobic, opportunistic human, and plant pathogenic taxa. The classification of genera and species Pleosporaceae has been a major challenge due to the lack of a clear understanding of the importance of the morphological characters used to distinguish taxa as well as the lack of reference strains. Recent treatments concluded that Pleospora and some other genera in Pleosporaceae are likely polyphyletic. In order to establish the evolutionary relationships and to resolve the polyphyletic nature of Pleospora and allied genera, we sequenced the 18S nrDNA, 28S nrDNA, ITS, GAPDH, RPB2 and TEF1-alpha gene regions of Pleosporaceae species and phylogenetically analysed this data. Multigene phylogenies strongly support the monophyletic nature of Pleosporaceae among the other families in Pleosporales, and the acceptance of the genera Alternaria, Bipolaris, Clathrospora, Comoclathris, Curvularia, Dactuliophora, Decorospora, Diademosa, Exserohilum, Extrawettsteinina, Gibbago, Neocamarosporium, Paradendryphiella, Platysporoides, Pleospora, Porocercospora, Pseudoyuconia and Pyrenophora. Austropleospora, Dendryphion, Edenia and Macrospora are excluded from the family based on morphology coupled with molecular data. Two novel species, Alternaria murispora in this paper and Comoclathris sedi are introduced. The sexual morph of Alternaria alternata is re-described and illustrated using modern concepts from fresh collections. The paraphyletic nature of Pleospora is resolved based on the available morpho-molecular data, but further sampling with fresh collections, reference or ex-type strains and molecular data are needed to obtain a natural classification of genera and the family.
Studies in Mycology | 2017
Yasmina Marin-Felix; Johannes Z. Groenewald; Lei Cai; Quan Chen; Seonju Marincowitz; Irene Barnes; K. Bensch; U. Braun; Erio Camporesi; Ulrike Damm; Z.W. de Beer; Asha J. Dissanayake; Jacqueline Edwards; Alejandra Giraldo; Margarita Hernández-Restrepo; Kevin D. Hyde; Ruvishika S. Jayawardena; Lorenzo Lombard; J. Jennifer Luangsa-ard; Alistair R. McTaggart; Amy Y. Rossman; Marcelo Sandoval-Denis; M. Shen; Roger G. Shivas; Yu Pei Tan; E. van der Linde; Michael J. Wingfield; Alan R. Wood; J.Q. Zhang; Y. Zhang
Genera of Phytopathogenic Fungi (GOPHY) is introduced as a new series of publications in order to provide a stable platform for the taxonomy of phytopathogenic fungi. This first paper focuses on 21 genera of phytopathogenic fungi: Bipolaris, Boeremia, Calonectria, Ceratocystis, Cladosporium, Colletotrichum, Coniella, Curvularia, Monilinia, Neofabraea, Neofusicoccum, Pilidium, Pleiochaeta, Plenodomus, Protostegia, Pseudopyricularia, Puccinia, Saccharata, Thyrostroma, Venturia and Wilsonomyces. For each genus, a morphological description and information about its pathology, distribution, hosts and disease symptoms are provided. In addition, this information is linked to primary and secondary DNA barcodes of the presently accepted species, and relevant literature. Moreover, several novelties are introduced, i.e. new genera, species and combinations, and neo-, lecto- and epitypes designated to provide a stable taxonomy. This first paper includes one new genus, 26 new species, ten new combinations, and four typifications of older names.