Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruxing Zhao is active.

Publication


Featured researches published by Ruxing Zhao.


PLOS ONE | 2014

Elevated peripheral frequencies of Th22 cells: a novel potent participant in obesity and type 2 diabetes.

Ruxing Zhao; Dongqi Tang; Shounan Yi; Wenjuan Li; Chuanlong Wu; Yiran Lu; Xinguo Hou; Jun Song; Peng Lin; Li Chen; Lei Sun

Objective Chronic low-grade inflammation has long been recognized as the central link between obesity and type 2 diabetes (T2D). The novel subset of T helper (Th) cells, Th22, plays an emerging role in chronic inflammation. We investigated the potential association between Th22 and the pathogenesis of obesity and T2D. Methods Ninety T2D inpatients (T2D group), 30 healthy participants with BMI ranged from 19 to 23.9 kg/m2 (CTL group) and 30 metabolically healthy obese controls with BMI ≥ 30 kg/m2 (MHO group) were employed in our study. Peripheral frequencies of Th22 and Th1 and Th17 cells were determined by flow cytometry based on their specific cytokine patterns. Cytokine levels in fresh plasma were quantified by ELISA. Results Compared to that in CTL group (1.18±0.06%, n = 28), peripheral frequency of Th22 cells was significantly increased in MHO group (1.88±0.10%, n = 30) and in T2D group (2.247±0.10%, n = 89). There was a consistent notable increase in plasma interleukin (IL)-22 of T2D patients [47.56 (30.55–76.89) pg/mL] as compared with that of MHO group [36.65 (29.52–55.70) pg/ml; *P<0.0001] and CTLs [36.33 (31.93–40.62) pg/mL; *P<0.0001]. Furthermore, other than Th1/Th17, previously frequently described participants in obesity and T2D, there was a strong correlation between Th22 frequency and the homeostasis model of assessment for insulin resistance index (r = 0.6771, *P<0.0001) and HOMA for β-cell function (r = −0.7264, *P<0.0001). Conclusions There were increased Th22 frequencies and IL-22 levels in obesity and T2D. Elevated Th22 and IL-22 also aided in the differentiation of MHO from T2D patients. The notable correlation implied that Th22 might play a more determinant role in both insulin resistance and β-cell impairment.


Experimental Diabetes Research | 2016

Circulating Levels of Betatrophin and Irisin Are Not Associated with Pancreatic β-Cell Function in Previously Diagnosed Type 2 Diabetes Mellitus Patients

Lingshu Wang; Jun Song; Chuan Wang; Peng Lin; Kai Liang; Yu Sun; Tianyi He; Wenjuan Li; Ruxing Zhao; Jun Qin; Yiran Lu; Jinbo Liu; Fuqiang Liu; Xinguo Hou; Li Chen

Betatrophin and irisin are two recently identified hormones which may participate in regulating pancreatic β-cell function. However, the associations of these two hormones with β-cell function remain unclear. The present study aims to demonstrate the associations of circulating betatrophin and irisin levels with β-cell function, assessed by the area under the curve (AUC) of C-peptide, and the possible correlation between these two hormones in previously diagnosed type 2 diabetes mellitus (T2DM) patients. In total, 20 age-, sex-, and body mass index- (BMI-) matched normal glucose tolerance (NGT) subjects and 120 previously diagnosed T2DM patients were included in this study. Partial correlation analysis was used to evaluate the relationships between these two hormones and indexes of β-cell function and insulin resistance. Our results showed that betatrophin levels were significantly elevated, while irisin levels were significantly decreased, in patients with T2DM compared with NGT subjects. However, partial correlation analysis showed that betatrophin levels did not correlate with β-cell function-related variables or insulin resistance-related variables before or after controlling multiple covariates, while irisin correlated positively with insulin sensitivity but is not associated with β-cell function-related variables. Besides, no correlation was observed between betatrophin and irisin levels. Hence we concluded that betatrophin and irisin were not associated with β-cell function in previously diagnosed T2DM patients.


Experimental Diabetes Research | 2014

Small islets transplantation superiority to large ones: implications from islet microcirculation and revascularization.

Wenjuan Li; Ruxing Zhao; Jidong Liu; Meng Tian; Yiran Lu; Tianyi He; Meng Cheng; Kai Liang; Xia Li; Xiangdong Wang; Yu Sun; Li Chen

Pancreatic islet transplantation is a promising therapy to regain glycemic control in diabetic patients. The selection of ideal grafts is the basis to guarantee short-term effectivity and longevity of the transplanted islets. Contradictory to the traditional notion, recent findings implied the superiority of small islets for better transplantation outcomes rather than the large and intact ones. However, the mechanisms remain to be elucidated. Recent evidences emphasized the major impact of microcirculation on islet β-cell mass and function. And potentials in islet graft revascularization are crucial for their survival and preserved function in the recipient. In this study, we verified the distinct histological phenotype and functionality of small islets versus large ones both in vitro and in vivo. With efforts to exploring the differences in microcirculation and revascularization of islet grafts, we further evaluated local expressions of angiotensin and vascular endothelial growth factor A (VEGF-A) at different levels. Our findings reveal that, apart from the higher density of insulin-producing β-cells, small islets express less angiotensin and more angiotrophic VEGF-A. We therefore hypothesized a logical explanation of the small islet superiority for transplantation outcome from the aspects of facilitated microcirculation and revascularization intrinsically in small islets.


PLOS ONE | 2015

C-Peptide Is Independently Associated with an Increased Risk of Coronary Artery Disease in T2DM Subjects: A Cross-Sectional Study

Lingshu Wang; Peng Lin; Aixia Ma; Huizhen Zheng; Kexin Wang; Wenjuan Li; Chuan Wang; Ruxing Zhao; Kai Liang; Fuqiang Liu; Xinguo Hou; Jun Song; Yiran Lu; Ping Zhu; Yu Sun; Li Chen

Objective C-peptide has been reported to be a marker of subclinical atherosclerosis in type 2 diabetes mellitus (T2DM) patients, whereas its role in coronary artery disease (CAD) has not been clarified, especially in diabetics with differing body mass indices (BMIs). Design and Methods This cross-sectional study included 501 patients with T2DM. First, all subjects were divided into the following two groups: CAD and non-CAD. Then, binary logistic regression was used to determine the risk factors for CAD for all patients. To clarify the role of obesity, we re-divided all subjects into two additional groups (obese and non-obese) based on BMI. Finally, binary logistic regression was used to determine the risk factors for CAD for each weight group. Results The patients with CAD showed a higher BMI and fasting C-peptide level in addition to an increased prevalence of traditional risk factors for CAD, such as hypertension, insulin resistance, higher cholesterol, cysteine-C (Cys-C) and lower estimated glomerular filtration rate (eGFR). Logistic regression analysis showed that fasting C-peptide (OR=1.513, p=0.005), insulin treatment (OR=1.832, p=0.027) hypertension (OR=1.987, p=0.016) and hyperlipidemia (OR=4.159, p<0.001) significantly increased the risk of clinical CAD in the T2DM patients independent of age, gender, diabetes duration, smoking and alcohol statuses, fasting insulin and glucose, hypoglycemic episodes, UA and eGFR. Additionally, in both of the obese (OR=1.488, p=0.049) and non-obese (OR=1.686, p=0.037) DM groups, C-peptide was associated with an increased risk of CAD after multiple adjustments. Conclusions C-peptide is associated with an increased CAD risk in T2DM patients, no matter whether they are obese or not.


PLOS ONE | 2014

Triglyceride levels are closely associated with mild declines in estimated glomerular filtration rates in middle-aged and elderly Chinese with normal serum lipid levels.

Xinguo Hou; Chuan Wang; Xiuping Zhang; Xiangmin Zhao; Yulian Wang; Chengqiao Li; Mei Li; Shaoyuan Wang; Weifang Yang; Zeqiang Ma; Aixia Ma; Huizhen Zheng; Jiahui Wu; Yu Sun; Jun Song; Peng Lin; Kai Liang; Lei Gong; Meijian Wang; Fuqiang Liu; Wenjuan Li; Juan Xiao; Fei Yan; Junpeng Yang; Lingshu Wang; Meng Tian; Jidong Liu; Ruxing Zhao; Shihong Chen; Li Chen

Objective To investigate the relationship between lipid profiles [including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C)] and a mild decline in the estimated glomerular filtration rate (eGFR) in subjects with normal serum lipid levels. Design and Methods In this study, we included 2647 participants who were ≥40 years old and had normal serum lipid levels. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation was used to estimate the GFR. A mildly reduced eGFR was defined as 60–90 mL/min/1.73 m2. First, multiple linear regression analysis was used to estimate the association of lipid profiles with the eGFR. Then, the levels of each lipid component were divided into four groups, using the 25th, 50th and 75th percentiles as cut-off points. Finally, multiple logistic regression analysis was used to investigate the association of different lipid components with the risk of mildly reduced eGFR. Results In the group with a mildly reduced eGFR, TG and LDL-C levels were significantly increased, but HDL-C levels were significantly decreased. After adjusting for age, gender, body mass index (BMI), systolic blood pressure (SBP), glycated hemoglobin (HbA1c), smoking and drinking, only TC and TG were independently related to the eGFR. Additionally, only TG showed a linear relationship with an increased risk of a mildly reduced eGFR, with the highest quartile group (TG: 108–150 mg/dl [1.22–1.70 mmol/L]) having a significantly increased risk after adjusting for the above factors. Conclusions Triglyceride levels are closely associated with a mildly reduced eGFR in subjects with normal serum lipid levels. Dyslipidemia with lower TG levels could be used as new diagnostic criteria for subjects with mildly reduced renal function.


PLOS ONE | 2014

Fluctuation between fasting and 2-H postload glucose state is associated with glomerular hyperfiltration in newly diagnosed diabetes patients with HbA1c < 7%.

Xinguo Hou; Chuan Wang; Shaoyuan Wang; Weifang Yang; Zeqiang Ma; Yulian Wang; Chengqiao Li; Mei Li; Xiuping Zhang; Xiangmin Zhao; Yu Sun; Jun Song; Peng Lin; Kai Liang; Lei Gong; Meijian Wang; Fuqiang Liu; Wenjuan Li; Fei Yan; Junpeng Yang; Lingshu Wang; Meng Tian; Jidong Liu; Ruxing Zhao; Shihong Chen; Li Chen

Objective To investigate whether fluctuations between the fasting and 2-h postload glucose ([2-hPBG]-fasting blood glucose [FBG]) states are associated with glomerular hyperfiltration (GHF) in middle-aged and elderly Chinese patients with newly diagnosed diabetes. Design and Methods In this study, we included 679 newly diagnosed diabetes patients who were ≥40 years old. All the subjects were divided into two groups; those with HbA1c<7% and ≥7%. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation was used to estimate the glomerular filtration rate (GFR). GHF was defined as an eGFR ≥ the 90th percentile. First, a multiple linear regression analysis was used to estimate the association of 2-hPBG-FBG with eGFR. Then, a generalized additive model was used to explore the possible nonlinear relationship between 2-hPBG-FBG and eGFR. Next, the 2-hPBG-FBG values were divided into four groups as follows: 0–36, 36–72, 72–108 and ≥108 mg/dl. Finally, a multiple logistic regression analysis was used to investigate the association of 2-hPBG-FBG with the risk of GHF. Results For the group with HbA1c<7%, the eGFR and the percentage of GHF were significantly higher compared with the group with HbA1c≥7%. After adjusting for age, gender, body mass index (BMI), systolic blood pressure (BP), diastolic BP, fasting insulin, cholesterol, triglycerides, smoking, drinking and glycated hemoglobin (HbA1c), 2-hPBG-FBG was significantly associated with increased eGFR and an increased risk of GHF (the GHF risk increased by 64.9% for every 36.0 mg/dl [2.0 mmol/L] 2-hPBG-FBG increase) only in those patients with HbA1c<7%. Additionally, 2-hPBG-FBG and eGFR showed a nonlinear association (P<0.001). Conclusions Increased fluctuations between the fasting and 2-h postload glucose states are closely associated with increased eGFR and an increased risk of GHF in newly diagnosed diabetes patients with HbA1c<7%.


Mediators of Inflammation | 2014

Increased Peripheral Proinflammatory T Helper Subsets Contribute to Cardiovascular Complications in Diabetic Patients

Ruxing Zhao; Wenjuan Li; Yiran Lu; Jun Qin; Chuanlong Wu; Meng Tian; Tianyi He; Shounan Yi; Dongqi Tang; Lei Sun; Li Chen

Background. Coronary atherosclerotic heart disease (CHD) is one of the major concerns in type 2 diabetes (T2D). The systemic chronic inflammation has been postulated to bridge the increased risk of cardiovascular disease and T2D. We formulated that increased peripheral proinflammatory T helper subsets contributed to the development of cardiovascular complications in diabetic patients. Methods. The frequencies of peripheral total CD4+ T helper cells, proinflammatory Th1, Th17, and Th22 subsets were determined by flow cytometry in diabetic patients with or without CHD (n = 42 and 67, resp.). Results. Both peripheral frequencies and total numbers of Th1, Th17, and Th22 cells were further increased in diabetic patients with CHD. Logistic regression and categorical cross-table analysis further confirmed that increased proinflammatory Th subsets, especially Th22, were independent risk factors of cardiovascular complication in diabetes. Elevated Th subsets also correlated with increased CRP levels and the atherogenic index of plasma. Moreover, Th1 frequency and Th22 numbers demonstrated remarkable potential in predicting CHD in diabetes. Conclusions. Increased peripheral proinflammatory T helper subsets act in concert and contribute to the increased prevalence of diabetic cardiovasculopathy. The recently identified Th22 cells might play an independent role in CHD and represent a novel proxy for cardiovascular risks in diabetes.


Stem Cell Research & Therapy | 2017

Mesenchymal stromal cells ameliorate oxidative stress-induced islet endothelium apoptosis and functional impairment via Wnt4-β-catenin signaling

Lingshu Wang; Li Qing; He Liu; Na Liu; Jingting Qiao; Chen Cui; Tianyi He; Ruxing Zhao; Fuqiang Liu; Fei Yan; Chuan Wang; Kai Liang; Xinghong Guo; Ying H. Shen; Xinguo Hou; Li Chen

BackgroundIslet dysfunction and destruction are the common cause for both type 1 and type 2 diabetes mellitus (T2DM). The islets of Langerhans are highly vascularized miniorgans, and preserving the structural integrity and full function of the microvascular endothelium is vital for protecting the islets from the infiltration of immune cells and secondary inflammatory attack. Mesenchymal stromal cell (MSC)-based therapies have been proven to promote angiogenesis of the islets; however, the underlying mechanism for the protective role of MSCs in the islet endothelium is still vague.MethodsIn this study, we used MS-1, a murine islet microvascular endothelium cell line, and an MSC-MS1 transwell culturing system to investigate the protective mechanism of rat bone marrow-derived MSCs under oxidative stress in vitro. Cell apoptosis was detected by TUNEL staining, annexin V/PI flow cytometry analysis, and cleaved caspase 3 western blotting analysis. Endothelial cell activation was determined by expression of intercellular cell adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM), as well as eNOS phosphorylation/activation. The changes of VCAM-1, eNOS, and the β-catenin expression were also tested in the isolated islets of T2DM rats infused with MSCs.ResultsWe observed that treating MS-1 cells with H2O2 triggered significant apoptosis, induction of VCAM expression, and reduction of eNOS phosphorylation. Importantly, coculturing MS-1 cells with MSCs prevented oxidative stress-induced apoptosis, eNOS inhibition, and VCAM elevation in MS-1 cells. Similar changes in VCAM-1 and eNOS phosphorylation could also be observed in the islets isolated from T2DM rats infused with MSCs. Moreover, MSCs cocultured with MS-1 in vitro or their administration in vivo could both result in an increase of β-catenin, which suggested activation of the β-catenin-dependent Wnt signaling pathway. In MS-1 cells, activation of the β-catenin-dependent Wnt signaling pathway partially mediated the protective effects of MSCs against H2O2-induced apoptosis and eNOS inhibition. Furthermore, MSCs produced a significant amount of Wnt4 and Wnt5a. Although both Wnt4 and Wnt5a participated in the interaction between MSCs and MS-1 cells, Wnt4 exhibited a protective role while Wnt5a seemed to show a destructive role in MS-1 cells.ConclusionsOur observations provide evidence that the orchestration of the MSC-secreted Wnts could promote the survival and improve the endothelial function of the injured islet endothelium via activating the β-catenin-dependent Wnt signaling in target endothelial cells. This finding might inspire further in-vivo studies.


PLOS ONE | 2014

Fluctuation between fasting and 2-H postload glucose state is associated with chronic kidney disease in previously diagnosed type 2 diabetes patients with HbA1c ≥ 7%.

Chuan Wang; Jun Song; Zeqiang Ma; Weifang Yang; Chengqiao Li; Xiuping Zhang; Xinguo Hou; Yu Sun; Peng Lin; Kai Liang; Lei Gong; Meijian Wang; Fuqiang Liu; Wenjuan Li; Fei Yan; Junpeng Yang; Lingshu Wang; Meng Tian; Jidong Liu; Ruxing Zhao; Li Chen

Objective To investigate how the glucose variability between fasting and a 2-h postload glucose state (2-h postload plasma glucose [2hPG]-fasting plasma glucose [FPG]) is associated with chronic kidney disease (CKD) in middle-aged and elderly Chinese patients previously diagnosed with type 2 diabetes. Design and Methods This cross-sectional study included 1054 previously diagnosed type 2 diabetes patients who were 40 years of age and older. First, the subjects were divided into two groups based on a glycated hemoglobin (HbA1c) value of 7%. Each group was divided into two subgroups, with or without CKD. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation was used to estimate the glomerular filtration rate (GFR). CKD was defined as eGFR<60 mL/min/1.73 m2. Multiple linear regression analysis was used to estimate the association between the 2hPG-FPG and eGFR. The 2hPG-FPG value was divided into four groups increasing in increments of 36 mg/dl (2.0 mmol/L): 0–72, 72–108, 108–144 and ≥144 mg/dl, based on the quartiles of patients with HbA1c levels ≥7%; then, binary logistic regression analysis was used to investigate the association between 2hPG-FPG and the risk of CKD. Results In the patients with HbA1c levels ≥7%, the 2hPG-FPG was significantly associated with decreased eGFR and an increased risk of CKD independent of age, gender, body mass index (BMI), systolic blood pressure (BP), diastolic BP, smoking, and drinking, as well as fasting insulin, cholesterol, triglyceride, and HbA1c levels. The patients with 2hPG-FPG values ≥144 mg/dl showed an increased odds ratio (OR) of 2.640 (P = 0.033). Additionally, HbA1c was associated with an increased risk of CKD in patients with HbA1c values ≥7%. Conclusions The short-term glucose variability expressed by 2hPG-FPG is closely associated with decreased eGFR and an increased risk of CKD in patients with poor glycemic control (HbA1c≥7%).


Experimental Diabetes Research | 2017

Electrochemical Skin Conductance May Be Used to Screen for Diabetic Cardiac Autonomic Neuropathy in a Chinese Population with Diabetes

Tianyi He; Chuan Wang; Anju Zuo; Pan Liu; Ruxing Zhao; Wenjuan Li; Li Chen; Xinguo Hou

Aims. This study aimed to assess whether the electrochemical skin conductance (ESC) could be used to screen for diabetic cardiac autonomic neuropathy (DCAN) in a Chinese population with diabetes. Methods. We recruited 75 patients with type 2 diabetes mellitus (T2DM) and 45 controls without diabetes. DCAN was diagnosed by the cardiovascular autonomic reflex tests (CARTs) as gold standard. In all subjects ESCs of hands and feet were also detected by SUDOSCAN™ as a new screening method. The efficacy was assessed by receiver operating characteristic (ROC) curve analysis. Results. The ESCs of both hands and feet were significantly lower in T2DM patients with DCAN than those without DCAN (67.33 ± 15.37 versus 78.03 ± 13.73, P = 0.002, and 57.77 ± 20.99 versus 75.03 ± 11.41, P < 0.001). The ROC curve analysis showed the areas under the ROC curve were both 0.75 for ESCs of hands and feet in screening DCAN. And the optimal cut-off values of ESCs, sensitivities, and specificities were 76 μS, 76.7%, and 75.6% for hands and 75 μS, 80.0%, and 60.0% for feet, respectively. Conclusions. ESC measurement is a reliable and feasible method to screen DCAN in the Chinese population with diabetes before further diagnosis with CARTs.

Collaboration


Dive into the Ruxing Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Sun

Shandong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge