Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruyi Zhang is active.

Publication


Featured researches published by Ruyi Zhang.


Genes and Diseases | 2017

Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine

Cody S. Lee; Elliot S. Bishop; Ruyi Zhang; Xinyi Yu; Evan M. Farina; Shujuan Yan; Chen Zhao; Zongyue Zeng; Yi Shu; Xingye Wu; Jiayan Lei; Yasha Li; Wenwen Zhang; Chao Yang; Ke Wu; Ying Wu; Sherwin Ho; Aravind Athiviraham; Michael J. Lee; Jennifer Moriatis Wolf; Russell R. Reid; Tong-Chuan He

With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Despite numerous setbacks, efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases. It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies. There has been a long-lasting interest in using viral vectors, especially adenoviral vectors, to deliver therapeutic genes for the past two decades. Among all currently available viral vectors, adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types. The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development. In fact, among over 2000 gene therapy clinical trials approved worldwide since 1989, a significant portion of the trials have utilized adenoviral vectors. This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors, including adenoviral biology, approaches to engineering adenoviral vectors, and their applications in clinical and preclinical studies with an emphasis in the areas of cancer treatment, vaccination and regenerative medicine. Current challenges and future directions regarding the use of adenoviral vectors are also discussed. It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine.


Oncotarget | 2017

lncRNA H19 mediates BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) through Notch signaling.

Junyi Liao; Xinyi Yu; Xue Hu; Jiaming Fan; Jing Wang; Zhicai Zhang; Chen Zhao; Zongyue Zeng; Yi Shu; Ruyi Zhang; Shujuan Yan; Yasha Li; Wenwen Zhang; Jing Cui; Chao Ma; Li Li; Yichun Yu; Tingting Wu; Xingye Wu; Jiayan Lei; Jia Wang; Chao Yang; Ke Wu; Ying Wu; Jun Tang; Bai-Cheng He; Zhong-Liang Deng; Hue H. Luu; Rex C. Haydon; Russell R. Reid

Mesenchymal stem cells (MSCs) are multipotent progenitor cells that can undergo self-renewal and differentiate into multiple lineages. Osteogenic differentiation from MSCs is a well-orchestrated process and regulated by multiple signaling pathways. We previously demonstrated that BMP9 is one of the most potent osteogenic factors. However, molecular mechanism through which BMP9 governs osteoblastic differentiation remains to be fully understood. Increasing evidence indicates noncoding RNAs (ncRNAs) may play important regulatory roles in many physiological and/or pathologic processes. In this study, we investigate the role of lncRNA H19 in BMP9-regulated osteogenic differentiation of MSCs. We demonstrated that H19 was sharply upregulated at the early stage of BMP9 stimulation of MSCs, followed by a rapid decease and gradual return to basal level. This process was correlated with BMP9-induced expression of osteogenic markers. Interestingly, either constitutive H19 expression or silencing H19 expression in MSCs significantly impaired BMP9-induced osteogenic differentiation in vitro and in vivo, which was effectively rescued by the activation of Notch signaling. Either constitutive H19 expression or silencing H19 expression led to the increased expression of a group of miRNAs that are predicted to target Notch ligands and receptors. Thus, these results indicate that lncRNA H19 functions as an important mediator of BMP9 signaling by modulating Notch signaling-targeting miRNAs. Our findings suggest that the well-coordinated biphasic expression of lncRNA H19 may be essential in BMP9-induced osteogenic differentiation of MSCs, and that dysregulated H19 expression may impair normal osteogenesis, leading to pathogenic processes, such as bone tumor development.Mesenchymal stem cells (MSCs) are multipotent progenitor cells that can undergo self-renewal and differentiate into multiple lineages. Osteogenic differentiation from MSCs is a well-orchestrated process and regulated by multiple signaling pathways. We previously demonstrated that BMP9 is one of the most potent osteogenic factors. However, molecular mechanism through which BMP9 governs osteoblastic differentiation remains to be fully understood. Increasing evidence indicates noncoding RNAs (ncRNAs) may play important regulatory roles in many physiological and/or pathologic processes. In this study, we investigate the role of lncRNA H19 in BMP9-regulated osteogenic differentiation of MSCs. We demonstrated that H19 was sharply upregulated at the early stage of BMP9 stimulation of MSCs, followed by a rapid decease and gradual return to basal level. This process was correlated with BMP9-induced expression of osteogenic markers. Interestingly, either constitutive H19 expression or silencing H19 expression in MSCs significantly impaired BMP9-induced osteogenic differentiation in vitro and in vivo, which was effectively rescued by the activation of Notch signaling. Either constitutive H19 expression or silencing H19 expression led to the increased expression of a group of miRNAs that are predicted to target Notch ligands and receptors. Thus, these results indicate that lncRNA H19 functions as an important mediator of BMP9 signaling by modulating Notch signaling-targeting miRNAs. Our findings suggest that the well-coordinated biphasic expression of lncRNA H19 may be essential in BMP9-induced osteogenic differentiation of MSCs, and that dysregulated H19 expression may impair normal osteogenesis, leading to pathogenic processes, such as bone tumor development.


Cellular Physiology and Biochemistry | 2017

Notch Signaling Augments BMP9-Induced Bone Formation by Promoting the Osteogenesis-Angiogenesis Coupling Process in Mesenchymal Stem Cells (MSCs)

Junyi Liao; Qiang Wei; Yulong Zou; Jiaming Fan; Dongzhe Song; Jing Cui; Wenwen Zhang; Yunxiao Zhu; Chao Ma; Xue Hu; Xiangyang Qu; Liqun Chen; Xinyi Yu; Zhicai Zhang; Claire Wang; Chen Zhao; Zongyue Zeng; Ruyi Zhang; Shujuan Yan; Tingting Wu; Xingye Wu; Yi Shu; Jiayan Lei; Yasha Li; Hue H. Luu; Michael J. Lee; Russell R. Reid; Guillermo A. Ameer; Jennifer Moriatis Wolf; Tong-Chuan He

Background/Aims: Mesenchymal stem cells (MSCs) are multipotent progenitors that can differentiate into several lineages including bone. Successful bone formation requires osteogenesis and angiogenesis coupling of MSCs. Here, we investigate if simultaneous activation of BMP9 and Notch signaling yields effective osteogenesis-angiogenesis coupling in MSCs. Methods: Recently-characterized immortalized mouse adipose-derived progenitors (iMADs) were used as MSC source. Transgenes BMP9, NICD and dnNotch1 were expressed by adenoviral vectors. Gene expression was determined by qPCR and immunohistochem¡stry. Osteogenic activity was assessed by in vitro assays and in vivo ectopic bone formation model. Results: BMP9 upregulated expression of Notch receptors and ligands in iMADs. Constitutively-active form of Notch1 NICD1 enhanced BMP9-induced osteogenic differentiation both in vitro and in vivo, which was effectively inhibited by dominant-negative form of Notch1 dnNotch1. BMP9- and NICD1-transduced MSCs implanted with a biocompatible scaffold yielded highly mature bone with extensive vascularization. NICD1 enhanced BMP9-induced expression of key angiogenic regulators in iMADs and Vegfa in ectopic bone, which was blunted by dnNotch1. Conclusion: Notch signaling may play an important role in BMP9-induced osteogenesis and angiogenesis. It’s conceivable that simultaneous activation of the BMP9 and Notch pathways should efficiently couple osteogenesis and angiogenesis of MSCs for successful bone tissue engineering.


Oncotarget | 2017

Noncanonical Wnt signaling plays an important role in modulating canonical Wnt-regulated stemness, proliferation and terminal differentiation of hepatic progenitors

Jiaming Fan; Qiang Wei; Junyi Liao; Yulong Zou; Dongzhe Song; Dongmei Xiong; Chao Ma; Xue Hu; Xiangyang Qu; Liqun Chen; Li Li; Yichun Yu; Xinyi Yu; Zhicai Zhang; Chen Zhao; Zongyue Zeng; Ruyi Zhang; Shujuan Yan; Tingting Wu; Xingye Wu; Yi Shu; Jiayan Lei; Yasha Li; Wenwen Zhang; Rex C. Haydon; Hue H. Luu; Ailong Huang; Tong-Chuan He; Hua Tang

The liver provides vital metabolic, exocrine and endocrine functions in the body as such pathological conditions of the liver lead to high morbidity and mortality. The liver is highly regenerative and contains facultative stem cells that become activated during injury to replicate to fully recover mass and function. Canonical Wnt/β-catenin signaling plays an important role in regulating the proliferation and differentiation of liver progenitor cells during liver regeneration. However, possible roles of noncanonical Wnts in liver development and regeneration remain undefined. We previously established a reversibly-immortalized hepatic progenitor cell line (iHPx), which retains hepatic differentiation potential. Here, we analyze the expression pattern of the essential components of both canonical and noncanonical Wnt signaling pathways at different postnatal stages of mouse liver tissues and iHPx cells. We find that noncanonical Wnt4, Wnt5a, Wnt9b, Wnt10a and Wnt10b, are highly expressed concordantly with the high levels of canonical Wnts in late stages of liver tissues. Wnt5a, Wnt9b, Wnt10a and Wnt10b are able to antagonize Wnt3a-induced β-catenin/TCF activity, reduce the stemness of iHPx cells, and promote hepatic differentiation of liver progenitors. Stem cell implantation assay demonstrates that Wnt5a, Wnt9b, Wnt10a and Wnt10b can inhibit cell proliferation and promote hepatic differentiation of the iHPx progenitor cells. Our results strongly suggest that noncanonical Wnts may play an important role in fine-tuning Wnt/β-catenin functions during liver development and liver regeneration. Thus, understanding regulatory mechanisms governing proliferation and differentiation of liver progenitor cells may hold great promise to facilitate liver regeneration and/or progenitor cell-based therapies for liver diseases.


Cellular Physiology and Biochemistry | 2017

Engineering the Rapid Adenovirus Production and Amplification (RAPA) Cell Line to Expedite the Generation of Recombinant Adenoviruses

Qiang Wei; Jiaming Fan; Junyi Liao; Yulong Zou; Dongzhe Song; Jianxiang Liu; Jing Cui; Feng Liu; Chao Ma; Xue Hu; Li Li; Yichun Yu; Xiangyang Qu; Liqun Chen; Xinyi Yu; Zhicai Zhang; Chen Zhao; Zongyue Zeng; Ruyi Zhang; Shujuan Yan; Xingye Wu; Yi Shu; Russell R. Reid; Michael J. Lee; Jennifer Moritis Wolf; Tong-Chuan He

Background/Aims: While recombinant adenoviruses are among the most widely-used gene delivery vectors and usually propagated in HEK-293 cells, generating recombinant adenoviruses remains time-consuming and labor-intense. We sought to develop a rapid adenovirus production and amplification (RAPA) line by assessing human Ad5 genes (E1A, E1B19K/55K, pTP, DBP, and DNA Pol) and OCT1 for their contributions to adenovirus production. Methods: Stable transgene expression in 293T cells was accomplished by using piggyBac system. Transgene expression was determined by qPCR. Adenoviral production was assessed with titering, fluorescent markers and/or luciferase activity. Osteogenic activity was assessed by measuring alkaline phosphatase activity. Results: Overexpression of both E1A and pTP led to a significant increase in adenovirus amplification, whereas other transgene combinations did not significantly affect adenovirus amplification. When E1A and pTP were stably expressed in 293T cells, the resultant RAPA line showed high efficiency in adenovirus amplification and production. The produced AdBMP9 infected mesenchymal stem cells with highest efficiency and induced most effective osteogenic differentiation. Furthermore, adenovirus production efficiency in RAPA cells was dependent on the amount of transfected DNA. Under optimal transfection conditions high-titer adenoviruses were obtained within 5 days of transfection. Conclusion: The RAPA cells are highly efficient for adenovirus production and amplification.


Gene Therapy | 2017

Characterization of retroviral infectivity and superinfection resistance during retrovirus-mediated transduction of mammalian cells

Junyi Liao; Qiang Wei; Jiaming Fan; Yulong Zou; Dongzhe Song; J Liu; F Liu; Chao Ma; Xue Hu; Li Li; Yichun Yu; Xiangyang Qu; Liqun Chen; Xinyi Yu; Zhicai Zhang; Chen Zhao; Zongyue Zeng; Ruyi Zhang; Shujuan Yan; Tingting Wu; Xingye Wu; Yi Shu; Jiayan Lei; Yasha Li; Wenwen Zhang; Jia Wang; Russell R. Reid; Michael J. Lee; Wei Huang; Jennifer Moriatis Wolf

Retroviral vectors including lentiviral vectors are commonly used tools to stably express transgenes or RNA molecules in mammalian cells. Their utilities are roughly divided into two categories, stable overexpression of transgenes and RNA molecules, which requires maximal transduction efficiency, or functional selection with retrovirus (RV)-based libraries, which takes advantage of retroviral superinfection resistance. However, the dynamic features of RV-mediated transduction are not well characterized. Here, we engineered two murine stem cell virus-based retroviral vectors expressing dual fluorescence proteins and antibiotic markers, and analyzed virion production efficiency and virion stability, dynamic infectivity and superinfection resistance in different cell types, and strategies to improve transduction efficiency. We found that the highest virion production occurred between 60 and 72 h after transfection. The stability of the collected virion supernatant decreased by >60% after 3 days in storage. We found that RV infectivity varied drastically in the tested human cancer lines, while low transduction efficiency was partially overcome with increased virus titer, prolonged infection duration and/or repeated infections. Furthermore, we demonstrated that RV receptors PIT1 and PIT2 were lowly expressed in the analyzed cells, and that PIT1 and/or PIT2 overexpression significantly improved transduction efficiency in certain cell lines. Thus, our findings provide resourceful information for the optimal conditions of retroviral-mediated gene delivery.


Journal of Cellular and Molecular Medicine | 2017

BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients

Dongzhe Song; Fugui Zhang; Russell R. Reid; Jixing Ye; Qiang Wei; Junyi Liao; Yulong Zou; Jiaming Fan; Chao Ma; Xue Hu; Xiangyang Qu; Liqun Chen; Li Li; Yichun Yu; Xinyi Yu; Zhicai Zhang; Chen Zhao; Zongyue Zeng; Ruyi Zhang; Shujuan Yan; Tingting Wu; Xingye Wu; Yi Shu; Jiayan Lei; Yasha Li; Wenwen Zhang; Jia Wang; Michael J. Lee; Jennifer Moriatis Wolf; Dingming Huang

The cranial suture complex is a heterogeneous tissue consisting of osteogenic progenitor cells and mesenchymal stem cells (MSCs) from bone marrow and suture mesenchyme. The fusion of cranial sutures is a highly coordinated and tightly regulated process during development. Craniosynostosis is a congenital malformation caused by premature fusion of cranial sutures. While the progenitor cells derived from the cranial suture complex should prove valuable for studying the molecular mechanisms underlying suture development and pathogenic premature suture fusion, primary human cranial suture progenitors (SuPs) have limited life span and gradually lose osteoblastic ability over passages. To overcome technical challenges in maintaining sufficient and long‐term culture of SuPs for suture biology studies, we establish and characterize the reversibly immortalized human cranial suture progenitors (iSuPs). Using a reversible immortalization system expressing SV40 T flanked with FRT sites, we demonstrate that primary human suture progenitor cells derived from the patent sutures of craniosynostosis patients can be efficiently immortalized. The iSuPs maintain long‐term proliferative activity, express most of the consensus MSC markers and can differentiate into osteogenic and adipogenic lineages upon BMP9 stimulation in vitro and in vivo. The removal of SV40 T antigen by FLP recombinase results in a decrease in cell proliferation and an increase in the endogenous osteogenic and adipogenic capability in the iSuPs. Therefore, the iSuPs should be a valuable resource to study suture development, intramembranous ossification and the pathogenesis of craniosynostosis, as well as to explore cranial bone tissue engineering.


ACS Applied Materials & Interfaces | 2017

Gelatin-Derived Graphene–Silicate Hybrid Materials Are Biocompatible and Synergistically Promote BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells

Yulong Zou; Nader Taheri Qazvini; Kylie Zane; Monirosadat Sadati; Qiang Wei; Junyi Liao; Jiaming Fan; Dongzhe Song; Jianxiang Liu; Chao Ma; Xiangyang Qu; Liqun Chen; Xinyi Yu; Zhicai Zhang; Chen Zhao; Zongyue Zeng; Ruyi Zhang; Shujuan Yan; Tingting Wu; Xingye Wu; Yi Shu; Yasha Li; Wenwen Zhang; Russell R. Reid; Michael J. Lee; Jennifer Moritis Wolf; Matthew Tirrell; Tong-Chuan He; Juan J. de Pablo; Zhong-Liang Deng

Graphene-based materials are used in many fields but have found only limited applications in biomedicine, including bone tissue engineering. Here, we demonstrate that novel hybrid materials consisting of gelatin-derived graphene and silicate nanosheets of Laponite (GL) are biocompatible and promote osteogenic differentiation of mesenchymal stem cells (MSCs). Homogeneous cell attachment, long-term proliferation, and osteogenic differentiation of MSCs on a GL-scaffold were confirmed using optical microscopy and scanning electron microscopy. GL-powders made by pulverizing the GL-scaffold were shown to promote bone morphogenetic protein (BMP9)-induced osteogenic differentiation. GL-powders increased the alkaline phosphatase (ALP) activity in immortalized mouse embryonic fibroblasts but decreased the ALP activity in more-differentiated immortalized mouse adipose-derived cells. Note, however, that GL-powders promoted BMP9-induced calcium mineral deposits in both MSC lines, as assessed using qualitative and quantitative alizarin red assays. Furthermore, the expression of chondro-osteogenic regulator markers such as Runx2, Sox9, osteopontin, and osteocalcin was upregulated by the GL-powder, independent of BMP9 stimulation; although the powder synergistically upregulated the BMP9-induced Osterix expression, the adipogenic marker PPARγ was unaffected. Furthermore, in vivo stem cell implantation experiments demonstrated that GL-powder could significantly enhance the BMP9-induced ectopic bone formation from MSCs. Collectively, our results strongly suggest that the GL hybrid materials promote BMP9-induced osteogenic differentiation of MSCs and hold promise for the development of bone tissue engineering platforms.


Oncotarget | 2017

CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs)

Xue Hu; Li Li; Xinyi Yu; Ruyi Zhang; Shujuan Yan; Zongyue Zeng; Yi Shu; Chen Zhao; Xingye Wu; Jiayan Lei; Yasha Li; Wenwen Zhang; Chao Yang; Ke Wu; Ying Wu; Liping An; Shifeng Huang; Xiaojuan Ji; Cheng Gong; Chengfu Yuan; Linghuan Zhang; Wei Liu; Bo Huang; Yixiao Feng; Bo Zhang; Rex C. Haydon; Hue H. Luu; Russell R. Reid; Michael J. Lee; Jennifer Moriatis Wolf

Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells that can undergo self-renewal and differentiate into multi-lineages. Bone marrow stromal stem cells (BMSCs) represent one of the most commonly-used MSCs. In order to overcome the technical challenge of maintaining primary BMSCs in long-term culture, here we seek to establish reversibly immortalized mouse BMSCs (imBMSCs). By exploiting CRISPR/Cas9-based homology-directed-repair (HDR) mechanism, we target SV40T to mouse Rosa26 locus and efficiently immortalize mouse BMSCs (i.e., imBMSCs). We also immortalize BMSCs with retroviral vector SSR #41 and establish imBMSC41 as a control line. Both imBMSCs and imBMSC41 exhibit long-term proliferative capability although imBMSC41 cells have a higher proliferation rate. SV40T mRNA expression is 130% higher in imBMSC41 than that in imBMSCs. However, FLP expression leads to 86% reduction of SV40T expression in imBMSCs, compared with 63% in imBMSC41 cells. Quantitative genomic PCR analysis indicates that the average copy number of SV40T and hygromycin is 1.05 for imBMSCs and 2.07 for imBMSC41, respectively. Moreover, FLP expression removes 92% of SV40T in imBMSCs at the genome DNA level, compared with 58% of that in imBMSC41 cells, indicating CRISPR/Cas9 HDR-mediated immortalization of BMSCs can be more effectively reversed than that of retrovirus-mediated random integrations. Nonetheless, both imBMSCs and imBMSC41 lines express MSC markers and are highly responsive to BMP9-induced osteogenic, chondrogenic and adipogenic differentiation in vitro and in vivo. Thus, the engineered imBMSCs can be used as a promising alternative source of primary MSCs for basic and translational research in the fields of MSC biology and regenerative medicine.


Scientific Reports | 2018

A blockade of PI3Kγ signaling effectively mitigates angiotensin II-induced renal injury and fibrosis in a mouse model

Xinyi Yu; Yunfeng Xia; Liyi Zeng; Xi Zhang; Liqun Chen; Shujuan Yan; Ruyi Zhang; Chen Zhao; Zongyue Zeng; Yi Shu; Shifeng Huang; Jiayan Lei; Chengfu Yuan; Linghuan Zhang; Yixiao Feng; Wei Liu; Bo Huang; Bo Zhang; Wenping Luo; Xi Wang; Hongmei Zhang; Rex C. Haydon; Hue H. Luu; Tong-Chuan He; Hua Gan

Chronic kidney disease (CKD) poses a formidable challenge for public healthcare worldwide as vast majority of patients with CKD are also at risk of accelerated cardiovascular disease and death. Renal fibrosis is the common manifestation of CKD that usually leads to end-stage renal disease although the molecular events leading to chronic renal fibrosis and eventually chronic renal failure remain to be fully understood. Nonetheless, emerging evidence suggests that an aberrant activation of PI3Kγ signaling may play an important role in regulating profibrotic phenotypes. Here, we investigate whether a blockade of PI3Kγ signaling exerts any beneficial effect on alleviating kidney injury and renal fibrosis. Using a mouse model of angiotensin II (Ang II)-induced renal damage, we demonstrate that PI3Kγ inhibitor AS605240 effectively mitigates Ang II-induced increases in serum creatinine and blood urea nitrogen, renal interstitial collagen deposition, the accumulation of ECM proteins and the expression of α-Sma and fibrosis-related genes in vivo. Mechanistically, we reveal that AS605240 effectively inhibits Ang II-induced cell proliferation and phosphorylation of Akt in fibroblast cells. Furthermore, we demonstrate that Ang II-upregulated expression of IL-6, Tnf-α, IL-1β and Tgf-β1 is significantly attenuated in the mice treated with AS605240. Taken together, our results demonstrate that PI3Kγ may function as a critical mediator of Ang II-induced renal injury and fibrosis. It is thus conceivable that targeted inhibition of PI3Kγ signaling may constitute a novel therapeutic approach to the clinical management of renal fibrosis, renal hypertension and/or CKD.

Collaboration


Dive into the Ruyi Zhang's collaboration.

Top Co-Authors

Avatar

Shujuan Yan

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Chen Zhao

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Xinyi Yu

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Yi Shu

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Zongyue Zeng

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Jiayan Lei

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ke Wu

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Xingye Wu

Chongqing Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge