Ruzinah Isha
Universiti Malaysia Pahang
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruzinah Isha.
Chemical engineering transactions | 2017
Vekes Balasundram; Norazana Ibrahim; Rafiziana Md. Kasmani; Mohd. Kamaruddin Abd. Hamid; Ruzinah Isha; Hasrinah Hasbullah; Roshafima Rasit Ali
The aim of this study is to investigate the influence of catalyst weight loading on pyrolysis of coconut copra via thermogravimetric analyser (TGA). The pyrolysis process is conducted up to 700 °C at a heating rate of 10 °C/min in nitrogen (N2) atmosphere flowing at 150 mL/min. The catalyst was successfully prepared via wet impregnation method, with alumina (Al2O3) used as support, while cerium (Ce) and nickel (Ni) act as promoter. The feedstock samples for TGA were prepared accordingly with biomass to catalyst weight loading ratio as follows: CC-1 (1 : 0.05), CC-2 (1 : 0.10), CC-3 (1 : 0.15), CC-4 (1 : 0.20), CC-5 (1 : 0.50), and CC-6 (1 : 1). For comparison, the pyrolysis of coconut copra without catalyst is also determined at the same operating condition and labelled as CC-7 (1 : 0). The TGA-DTG curves shows that, the presences of catalyst significantly affect the degradation rate of volatile matter than lignin degradation. In this study, the CC-3 sample has achieved high mass loss at 83.27 % and also high degradation rate at 0.0107 mg/s. For lignin decomposition, it shows that, CC-1 to CC-6 samples has achieved lignin mass loss percentage below 12.7 %. The non-catalytic sample (CC-7) has exhibited 80.33 % of volatile matter of mass loss and 13.92 % of lignin mass loss. The optimum catalyst loading was observed at 1 : 0.15 (CC-3) that work best to degrade volatile matter at highest mass loss, in which attributes to higher yield of pyrolysis oil.
Chemical engineering transactions | 2017
Vekes Balasundram; Norazana Ibrahim; Rafiziana Md. Kasmani; Mohd. Kamaruddin Abd. Hamid; Ruzinah Isha; Hasrinah Hasbullah; Roshafima Rasit Ali
The main objective of the present work is to study the effect of the nickel catalyst on pyrolysis of coconut copra and rice husk via thermo gravimetric analysis (TGA). The optimisation of catalyst weight ratio on biomass is also determined. The sample is pyrolysed from 30 °C up to 700 °C at 10 °C/min of heating rate in nitrogen (N2) environment flowing at 150 mL/min. The catalyst (Ni-Ce/Al2O3) was prepared via wet impregnation method, with alumina (Al2O3) as support, while cerium (Ce) and nickel (Ni) act as promoter. The samples were prepared accordingly with biomass to catalyst weight loading ratio and labelled as follows; rice husk as RH-2 (1 : 0.15) and RH-3 (1 : 0.50) including coconut copra as CC-2 (1 : 0.15) and CC-3 (1 : 0.50). For comparison, the pyrolysis of coconut copra and rice husk without catalyst also are conducted at the same operating condition and named as CC-1 (1 : 0) and RH-1 (1 : 0). The TGA-DTG curves show that, the presences of catalyst significantly affect the devolatilisation rate of biomass. The highest volatile matter was achieved by CC-2 at 83.27 % compared to RH-2 at only 46.66 %. Although at similar biomass to catalyst weight ratio of 1 : 0.15, the coconut copra is more favourable to yield a high volatile matter than the rice husk. At the same time, both biomass samples specifically CC-3 and RH-3 have achieved the highest in solid residual yield. Overall, the mass loss of volatile matter decreases in the order of CC-2 > CC-1 > CC-3 > RH-1 > RH-2 > RH-3. In summary, the optimum catalyst loading was at CC-2 and RH-2 that work best to degrade at the highest mass loss of volatile, in which attributes to higher yield of pyrolysis oil.
Energy Conversion and Management | 2014
Nugroho Dewayanto; Ruzinah Isha; Mohd Ridzuan Nordin
Journal of Cleaner Production | 2017
Vekes Balasundram; Norazana Ibrahim; Rafiziana Md. Kasmani; Mohd. Kamaruddin Abd. Hamid; Ruzinah Isha; Hasrinah Hasbullah; Roshafima Rasit Ali
Applied Energy | 2018
Vekes Balasundram; Norazana Ibrahim; Rafiziana Md. Kasmani; Ruzinah Isha; Mohd. Kamaruddin Abd. Hamid; Hasrinah Hasbullah; Roshafima Rasit Ali
Energy Procedia | 2017
Vekes Balasundram; Norazana Ibrahim; Rafiziana Md. Kasmani; Mohd. Kamaruddin Abd. Hamid; Ruzinah Isha; Hasrinah Hasbullah; Roshafima Rasit Ali
Energy Procedia | 2017
Vekes Balasundram; Norazana Ibrahim; Rafiziana Md. Kasmani; Ruzinah Isha; Mohd. Kamaruddin Abd. Hamid; Hasrinah Hasbullah
Jurnal Teknologi | 2014
Nugroho Dewayanto; Ruzinah Isha; Mohd Ridzuan Nordin
Journal of Analytical and Applied Pyrolysis | 2018
Vekes Balasundram; Khairunnisa Kamarul Zaman; Norazana Ibrahim; Rafiziana Md. Kasmani; Ruzinah Isha; Mohd. Kamaruddin Abd. Hamid; Hasrinah Hasbullah
Bulletin of Chemical Reaction Engineering & Catalysis | 2016
Weerana Eh Kan; Jamil Roslan; Ruzinah Isha