Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rwik Sen is active.

Publication


Featured researches published by Rwik Sen.


Journal of Biological Chemistry | 2012

Preferential Repair of DNA Double-strand Break at the Active Gene in Vivo

Priyasri Chaurasia; Rwik Sen; Tej K. Pandita; Sukesh R. Bhaumik

Background: To determine whether DNA double-strand break (DSB) repair is coupled to transcription, we analyzed DSB repair at the active and inactive genes. Results: Our results reveal that DSB repair at the active gene is faster than that at the inactive gene. Conclusion: These results demonstrate a preferential DSB repair at the active gene. Significance: This study supports the existence of transcription-coupled DSB repair. Previous studies have demonstrated transcription-coupled nucleotide/base excision repair. We report here for the first time that DNA double-strand break (DSB) repair is also coupled to transcription. We generated a yeast strain by introducing a homing (Ho) endonuclease cut site followed by a nucleotide sequence for multiple Myc epitopes at the 3′ end of the coding sequence of a highly active gene, ADH1. This yeast strain also contains the Ho cut site at the nearly silent or poorly active mating type α (MATα) locus and expresses Ho endonuclease under the galactose-inducible GAL1 promoter. Using this strain, DSBs were generated at the ADH1 and MATα loci in galactose-containing growth medium that induced HO expression. Subsequently, yeast cells were transferred to dextrose-containing growth medium to stop HO expression, and the DSB repair was monitored at the ADH1 and MATα loci by PCR, using the primer pairs flanking the Ho cut sites. Our results revealed a faster DSB repair at the highly active ADH1 than that at the nearly silent MATα locus, hence implicating a transcription-coupled DSB repair at the active gene in vivo. Subsequently, we extended this study to another gene, PHO5 (carrying the Ho cut site at its coding sequence), under transcriptionally active and inactive growth conditions. We found a fast DSB repair at the active PHO5 gene in comparison to its inactive state. Collectively, our results demonstrate a preferential DSB repair at the active gene, thus supporting transcription-coupled DSB repair in living cells.


Molecular and Cellular Biology | 2015

Eaf1p Is Required for Recruitment of NuA4 in Targeting TFIID to the Promoters of the Ribosomal Protein Genes for Transcriptional Initiation In Vivo

Bhawana Uprety; Rwik Sen; Sukesh R. Bhaumik

ABSTRACT NuA4 (nucleosome acetyltransferase of H4) promotes transcriptional initiation of TFIID (a complex of TBP and TBP-associated factors [TAFs])-dependent ribosomal protein genes involved in ribosome biogenesis. However, it is not clearly understood how NuA4 regulates the transcription of ribosomal protein genes. Here, we show that NuA4 is recruited to the promoters of ribosomal protein genes, such as RPS5, RPL2B, and RPS11B, for TFIID recruitment to initiate transcription, and the recruitment of NuA4 to these promoters is impaired in the absence of its Eaf1p component. Intriguingly, impaired NuA4 recruitment in a Δeaf1 strain depletes recruitment of TFIID (a TAF-dependent form of TBP) but not the TAF-independent form of TBP to the promoters of ribosomal protein genes. However, in the absence of NuA4, SAGA (Spt-Ada-Gcn5-acetyltransferase) is involved in targeting the TAF-independent form of TBP to the promoters of ribosomal protein genes for transcriptional initiation. Thus, NuA4 plays an important role in targeting TFIID to the promoters of ribosomal protein genes for transcriptional initiation in vivo. Such a function is mediated via its targeted histone acetyltransferase activity. In the absence of NuA4, ribosomal protein genes lose TFIID dependency and become SAGA dependent for transcriptional initiation. Collectively, these results provide significant insights into the regulation of ribosomal protein gene expression and, hence, ribosome biogenesis and functions.


Journal of Biological Chemistry | 2013

Functional analysis of Bre1p, an E3 ligase for histone H2B ubiquitylation, in regulation of RNA polymerase II association with active genes and transcription in vivo.

Rwik Sen; Shweta Lahudkar; Geetha Durairaj; Sukesh R. Bhaumik

Background: Bre1p is required for H2B ubiquitylation that promotes RNA polymerase II association with active genes, and hence transcription. Results: The RING domain of Bre1p facilitates, but a non-RING domain represses, transcription and RNA polymerase II association with active genes. Conclusion: Bre1p has a dominant-negative role in addition to its well known stimulatory function in transcription. Significance: This study unravels a hidden role of Bre1p in transcriptional regulation. H2B ubiquitylation is carried out by Bre1p, an E3 ligase, along with an E2 conjugase, Rad6p. H2B ubiquitylation has been previously implicated in promoting the association of RNA polymerase II with the coding sequence of the active GAL1 gene, and hence transcriptional elongation. Intriguingly, we find here that the association of RNA polymerase II with the active GAL1 coding sequence is not decreased in Δbre1, although it is required for H2B ubiquitylation. In contrast, the loss of Rad6p significantly impairs the association of RNA polymerase II with GAL1. Likewise, the point mutation of lysine 123 (ubiquitylation site) to arginine of H2B (H2B-K123R) also lowers the association of RNA polymerase II with GAL1, consistent with the role of H2B ubiquitylation in promoting RNA polymerase II association. Surprisingly, unlike the Δrad6 and H2B-K123R strains, complete deletion of BRE1 does not impair the association of RNA polymerase II with GAL1. However, deletion of the RING domain of Bre1p (that is essential for H2B ubiquitylation) impairs RNA polymerase II association with GAL1. These results imply that a non-RING domain of Bre1p counteracts the stimulatory role of the RING domain in regulating the association of RNA polymerase II with GAL1, and hence RNA polymerase II occupancy is not impaired in Δbre1. Consistently, GAL1 transcription is impaired in the absence of the RING domain of Bre1p, but not in Δbre1. Similar results are also obtained at other genes. Collectively, our results implicate both the stimulatory and repressive roles of Bre1p in regulation of RNA polymerase II association with active genes (and hence transcription) in vivo.


Transcription | 2013

Transcriptional stimulatory and repressive functions of histone H2B ubiquitin ligase.

Rwik Sen; Sukesh R. Bhaumik

Histone H2B ubiquitylation is involved in regulation of transcription and other DNA transacting processes. It is performed by a RING finger-containing ubiquitin ligase, Bre1, which is conserved from yeast to humans. Recent studies have implicated both transcriptional stimulatory and repressive functions of histone H2B ubiquitin ligase at the same or different genes as discussed here.


Nucleic Acids Research | 2014

Rrd1p, an RNA polymerase II-specific prolyl isomerase and activator of phosphoprotein phosphatase, promotes transcription independently of rapamycin response

Rwik Sen; Shivani Malik; Sarah Frankland-Searby; Bhawana Uprety; Shweta Lahudkar; Sukesh R. Bhaumik

Rrd1p (resistance to rapamycin deletion 1) has been previously implicated in controlling transcription of rapamycin-regulated genes in response to rapamycin treatment. Intriguingly, we show here that Rrd1p associates with the coding sequence of a galactose-inducible and rapamycin non-responsive GAL1 gene, and promotes the association of RNA polymerase II with GAL1 in the absence of rapamycin treatment following transcriptional induction. Consistently, nucleosomal disassembly at GAL1 is impaired in the absence of Rrd1p, and GAL1 transcription is reduced in the Δrrd1 strain. Likewise, Rrd1p associates with the coding sequences of other rapamycin non-responsive and inducible GAL genes to promote their transcription in the absence of rapamycin treatment. Similarly, inducible, but rapamycin-responsive, non-GAL genes such as CTT1, STL1 and CUP1 are also regulated by Rrd1p. However, transcription of these inducible GAL and non-GAL genes is not altered in the absence of Rrd1p when the steady-state is reached after long transcriptional induction. Consistently, transcription of the constitutively active genes is not changed in the Δrrd1 strain. Taken together, our results demonstrate a new function of Rrd1p in stimulation of initial rounds of transcription, but not steady-state/constitutive transcription, of both rapamycin-responsive and non-responsive genes independently of rapamycin treatment.


Journal of Molecular Biology | 2014

Sus1p facilitates pre-initiation complex formation at the SAGA-regulated genes independently of histone H2B de-ubiquitylation

Geetha Durairaj; Rwik Sen; Bhawana Uprety; Abhijit Shukla; Sukesh R. Bhaumik

Sus1p is a common component of transcriptional co-activator, SAGA (Spt-Ada-Gcn5-Acetyltransferase), and mRNA export complex, TREX-2 (Transcription-export 2), and is involved in promoting transcription and mRNA export. However, it is not clearly understood how Sus1p promotes transcription. Here, we show that Sus1p is predominantly recruited to the upstream activating sequence of a SAGA-dependent gene, GAL1, under transcriptionally active conditions as a component of SAGA to promote the formation of pre-initiation complex (PIC) at the core promoter and, consequently, transcriptional initiation. Likewise, Sus1p promotes the PIC formation at other SAGA-dependent genes and hence transcriptional initiation. Such function of Sus1p in promoting PIC formation and transcriptional initiation is not mediated via its role in regulation of SAGAs histone H2B de-ubiquitylation activity. However, Sus1ps function in regulation of histone H2B ubiquitylation is associated with transcriptional elongation, DNA repair and replication. Collectively, our results support that Sus1p promotes PIC formation (and hence transcriptional initiation) at the SAGA-regulated genes independently of histone H2B de-ubiquitylation and further controls transcriptional elongation, DNA repair and replication via orchestration of histone H2B ubiquitylation, thus providing distinct functional insights of Sus1p in regulation of DNA transacting processes.


Molecular and Cellular Biology | 2016

Fine-Tuning of FACT by the Ubiquitin Proteasome System in Regulation of Transcriptional Elongation.

Rwik Sen; Jannatul Ferdoush; Amala Kaja; Sukesh R. Bhaumik

ABSTRACT FACT (facilitates chromatin transcription), an evolutionarily conserved histone chaperone involved in transcription and other DNA transactions, is upregulated in cancers, and its downregulation is associated with cellular death. However, it is not clearly understood how FACT is fine-tuned for normal cellular functions. Here, we show that the FACT subunit Spt16 is ubiquitylated by San1 (an E3 ubiquitin ligase) and degraded by the 26S proteasome. Enhanced abundance of Spt16 in the absence of San1 impairs transcriptional elongation. Likewise, decreased abundance of Spt16 also reduces transcription. Thus, an optimal level of Spt16 is required for efficient transcriptional elongation, which is maintained by San1 via ubiquitylation and proteasomal degradation. Consistently, San1 associates with the coding sequences of active genes to regulate Spt16s abundance. Further, we found that enhanced abundance of Spt16 in the absence of San1 impairs chromatin reassembly at the coding sequence, similarly to the results seen following inactivation of Spt16. Efficient chromatin reassembly enhances the fidelity of transcriptional elongation. Taken together, our results demonstrate for the first time a fine-tuning of FACT by a ubiquitin proteasome system in promoting chromatin reassembly in the wake of elongating RNA polymerase II and transcriptional elongation, thus revealing novel regulatory mechanisms of gene expression.


Molecular and Cellular Biology | 2016

Regulation of Antisense Transcription by NuA4 Histone Acetyltransferase and Other Chromatin Regulatory Factors.

Bhawana Uprety; Amala Kaja; Jannatul Ferdoush; Rwik Sen; Sukesh R. Bhaumik

ABSTRACT NuA4 histone lysine (K) acetyltransferase (KAT) promotes transcriptional initiation of TATA-binding protein (TBP)-associated factor (TAF)-dependent ribosomal protein genes. TAFs have also been recently found to enhance antisense transcription from the 3′ end of the GAL10 coding sequence. However, it remains unknown whether, like sense transcription of the ribosomal protein genes, TAF-dependent antisense transcription of GAL10 also requires NuA4 KAT. Here, we show that NuA4 KAT associates with the GAL10 antisense transcription initiation site at the 3′ end of the coding sequence. Such association of NuA4 KAT depends on the Reb1p-binding site that recruits Reb1p activator to the GAL10 antisense transcription initiation site. Targeted recruitment of NuA4 KAT to the GAL10 antisense transcription initiation site promotes GAL10 antisense transcription. Like NuA4 KAT, histone H3 K4/36 methyltransferases and histone H2B ubiquitin conjugase facilitate GAL10 antisense transcription, while the Swi/Snf and SAGA chromatin remodeling/modification factors are dispensable for antisense, but not sense, transcription of GAL10. Taken together, our results demonstrate for the first time the roles of NuA4 KAT and other chromatin regulatory factors in controlling antisense transcription, thus illuminating chromatin regulation of antisense transcription.


Journal of Biological Chemistry | 2013

Functional analysis of Rad14p, a DNA damage recognition factor in nucleotide excision repair, in regulation of transcription in vivo

Priyasri Chaurasia; Rwik Sen; Sukesh R. Bhaumik

Background: Although Rad14p has well known functions in NER, its role in transcription is not clearly known. Results: We demonstrate that Rad14p associates with active gene in absence of lesion and promotes transcription. Conclusion: Our results support a new role of Rad14p in transcriptional regulation in addition to its well known function in NER. Significance: This study implicates Rad14p as a new regulator of gene expression. Rad14p is a DNA damage recognition factor in nucleotide excision repair. Intriguingly, we show here that Rad14p associates with the promoter of a galactose-inducible GAL1 gene after transcriptional induction in the absence of DNA lesion. Such an association of Rad14p facilitates the recruitment of TBP, TFIIH, and RNA polymerase II to the GAL1 promoter. Furthermore, the association of RNA polymerase II with the GAL1 promoter is significantly decreased in the absence of Rad14p, when the coding sequence was deleted. These results support the role of Rad14p in transcriptional initiation. Consistently, the level of GAL1 mRNA is significantly decreased in the absence of Rad14p. Similar results are also obtained at other galactose-inducible GAL genes such as GAL7 and GAL10. Likewise, Rad14p promotes transcription of other non-GAL genes such as CUP1, CTT1, and STL1 after transcriptional induction. However, the effect of Rad14p on the steady-state levels of transcription of GAL genes or constitutively active genes such as ADH1, PGK1, PYK1, and RPS5 is not observed. Thus, Rad14p promotes initial transcription but does not appear to regulate the steady-state level. Collectively, our results unveil a new role of Rad14p in stimulating transcription in addition to its well-known function in nucleotide excision repair.


Genetics | 2018

Two Distinct Regulatory Mechanisms of Transcriptional Initiation in Response to Nutrient Signaling

Jannatul Ferdoush; Rwik Sen; Amala Kaja; Priyanka Barman; Sukesh R. Bhaumik

SAGA (Spt-Ada-Gcn5-Acetyltransferase) and TFIID (transcription factor IID) have been previously shown to facilitate the formation of the PIC (pre-initiation complex) at the promoters of two distinct sets of genes. Here, we demonstrate that TFIID and SAGA differentially participate in the stimulation of PIC formation (and hence transcriptional initiation) at the promoter of PHO84, a gene for the high-affinity inorganic phosphate (Pi) transporter for crucial cellular functions, in response to nutrient signaling. We show that transcriptional initiation of PHO84 occurs predominantly in a TFIID-dependent manner in the absence of Pi in the growth medium. Such TFIID dependency is mediated via the NuA4 (nucleosome acetyltransferase of H4) histone acetyltransferase (HAT). Intriguingly, transcriptional initiation of PHO84 also occurs in the presence of Pi in the growth medium, predominantly via the SAGA complex, but independently of NuA4 HAT. Thus, Pi in the growth medium switches transcriptional initiation of PHO84 from NuA4-TFIID to SAGA dependency. Further, we find that both NuA4-TFIID- and SAGA-dependent transcriptional initiations of PHO84 are facilitated by the 19S proteasome subcomplex or regulatory particle (RP) via enhanced recruitment of the coactivators SAGA and NuA4 HAT, which promote TFIID-independent and -dependent PIC formation for transcriptional initiation, respectively. NuA4 HAT does not regulate activator binding to PHO84, but rather facilitates PIC formation for transcriptional initiation in the absence of Pi in the growth medium. On the other hand, SAGA promotes activator recruitment to PHO84 for transcriptional initiation in the growth medium containing Pi. Collectively, our results demonstrate two distinct stimulatory pathways for PIC formation (and hence transcriptional initiation) at PHO84 by TFIID, SAGA, NuA4, and 19S RP in the presence and absence of an essential nutrient, Pi, in the growth media, thus providing new regulatory mechanisms of transcriptional initiation in response to nutrient signaling.

Collaboration


Dive into the Rwik Sen's collaboration.

Top Co-Authors

Avatar

Sukesh R. Bhaumik

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Amala Kaja

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Bhawana Uprety

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jannatul Ferdoush

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Shweta Lahudkar

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Geetha Durairaj

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Priyanka Barman

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Priyasri Chaurasia

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sarah Frankland-Searby

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Shivani Malik

Southern Illinois University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge