Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan A. Chisholm is active.

Publication


Featured researches published by Ryan A. Chisholm.


Journal of Ecology | 2013

Scale‐dependent relationships between tree species richness and ecosystem function in forests

Ryan A. Chisholm; Helene C. Muller-Landau; Kassim Abdul Rahman; Daniel P. Bebber; Yue Bin; Stephanie A. Bohlman; Norman A. Bourg; Joshua S. Brinks; Sarayudh Bunyavejchewin; Nathalie Butt; Hong-Lin Cao; Min Cao; Dairon Cárdenas; Li-Wan Chang; Jyh-Min Chiang; George B. Chuyong; Richard Condit; H. S. Dattaraja; Stuart J. Davies; Alvaro Duque; Christine Fletcher; Nimal Gunatilleke; Savitri Gunatilleke; Zhanqing Hao; Rhett D. Harrison; Robert W. Howe; Chang-Fu Hsieh; Stephen P. Hubbell; Akira Itoh; David Kenfack

1. The relationship between species richness and ecosystem function, as measured by productivity or biomass, is of long-standing theoretical and practical interest in ecology. This is especially true for forests, which represent a majority of global biomass, productivity and biodiversity.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities

Ryan A. Chisholm; Stephen W. Pacala

A fundamental challenge in ecology is to understand the mechanisms that govern patterns of relative species abundance. Previous numerical simulations have suggested that complex niche-structured models produce species abundance distributions (SADs) that are qualitatively similar to those of very simple neutral models that ignore differences between species. However, in the absence of an analytical treatment of niche models, one cannot tell whether the two classes of model produce the same patterns via similar or different mechanisms. We present an analytical proof that, in the limit as diversity becomes large, a strong niche model give rises to exactly the same asymptotic form of SAD as the neutral model, and we verify the analytical predictions for a Panamanian tropical forest data set. Our results strongly suggest that neutral processes drive patterns of relative species abundance in high-diversity ecological communities, even when strong niche structure exists. However, neutral theory cannot explain what generates high diversity in the first place, and it may not be valid in low-diversity communities. Our results also confirm that neutral theory cannot be used to infer an absence of niche structure or to explain ecosystem function.


Ecology Letters | 2009

Linking dispersal, immigration and scale in the neutral theory of biodiversity

Ryan A. Chisholm; Jeremy W. Lichstein

In the classic spatially implicit formulation of Hubbells neutral theory of biodiversity a local community receives immigrants from a metacommunity operating on a relatively slow timescale, and dispersal into the local community is governed by an immigration parameter m. A current problem with neutral theory is that m lacks a clear biological interpretation. Here, we derive analytical expressions that relate the immigration parameter m to the geometry of the plot defining the local community and the parameters of a dispersal kernel. Our results facilitate more rigorous and extensive tests of the neutral theory: we conduct a test of neutral theory by comparing estimates of m derived from fits to empirical species abundance distributions to those derived from dispersal kernels and find acceptable correspondence; and we generate a new prediction of neutral theory by investigating how the shapes of species abundance distributions change theoretically as the spatial scale of observation changes. We also discuss how our main analytical results can be used to assess the error in the mean-field approximations associated with spatially implicit formulations of neutral theory.


Ecology Letters | 2014

Temporal variability of forest communities: empirical estimates of population change in 4000 tree species

Ryan A. Chisholm; Richard Condit; K. Abd Rahman; Patrick J. Baker; Sarayudh Bunyavejchewin; Yu-Yun Chen; George B. Chuyong; H. S. Dattaraja; Stuart J. Davies; Corneille E. N. Ewango; C.V.S. Gunatilleke; I. A. U. Nimal Gunatilleke; Stephen P. Hubbell; David Kenfack; Somboon Kiratiprayoon; Yiching Lin; Jean-Remy Makana; Nantachai Pongpattananurak; Sandeep Pulla; Ruwan Punchi-Manage; Raman Sukumar; Sheng-Hsin Su; I-Fang Sun; Hebbalalu S. Suresh; Sylvester Tan; Duncan W. Thomas; Sandra L. Yap

Long-term surveys of entire communities of species are needed to measure fluctuations in natural populations and elucidate the mechanisms driving population dynamics and community assembly. We analysed changes in abundance of over 4000 tree species in 12 forests across the world over periods of 6-28 years. Abundance fluctuations in all forests are large and consistent with population dynamics models in which temporal environmental variance plays a central role. At some sites we identify clear environmental drivers, such as fire and drought, that could underlie these patterns, but at other sites there is a need for further research to identify drivers. In addition, cross-site comparisons showed that abundance fluctuations were smaller at species-rich sites, consistent with the idea that stable environmental conditions promote higher diversity. Much community ecology theory emphasises demographic variance and niche stabilisation; we encourage the development of theory in which temporal environmental variance plays a central role.


Journal of Theoretical Biology | 2009

Critical slowing down as an indicator of transitions in two-species models.

Ryan A. Chisholm; Elise Filotas

Transitions in ecological systems often occur without apparent warning, and may represent shifts between alternative persistent states. Decreasing ecological resilience (the size of the basin of attraction around a stable state) can signal an impending transition, but this effect is difficult to measure in practice. Recent research has suggested that a decreasing rate of recovery from small perturbations (critical slowing down) is a good indicator of ecological resilience. Here we use analytical techniques to draw general conclusions about the conditions under which critical slowing down provides an early indicator of transitions in two-species predator-prey and competition models. The models exhibit three types of transition: the predator-prey model has a Hopf bifurcation and a transcritical bifurcation, and the competition model has two saddle-node bifurcations (in which case the system exhibits hysteresis) or two transcritical bifurcations, depending on the parameterisation. We find that critical slowing down is an earlier indicator of the Hopf bifurcation in predator-prey models in which prey are regulated by predation rather than by intrinsic density-dependent effects and an earlier indicator of transitions in competition models in which the dynamics of the rare species operate on slower timescales than the dynamics of the common species. These results lead directly to predictions for more complex multi-species systems, which can be tested using simulation models or real ecosystems.


PLOS ONE | 2012

Thirty Years of Forest Census at Barro Colorado and the Importance of Immigration in Maintaining Diversity

Richard Condit; Ryan A. Chisholm; Stephen P. Hubbell

The neutral theory of community ecology can predict diversity and abundances of tropical trees, but only under the assumption of steady input of new species into the community. Without input, diversity of a neutral community collapses, so the theorys predictions are not relevant unless novel species evolve or immigrate. We derive analytically the species input needed to maintain a target tree diversity, and find that a rate close to per recruit would maintain the observed diversity of 291 species in the Barro Colorado 50-ha tree plot in Panama. We then measured the rate empirically by comparing species present in one complete enumeration of the plot to those present five years later. Over six census intervals, the observed rate of input was to species per recruit, suggesting that there is adequate immigration of novel species to maintain diversity. Species interactions, niche partitioning, or density-dependence, while they may be present, do not appear to enhance tree species richness at Barro Colorado.


Theoretical Ecology | 2011

A theoretical model linking interspecific variation in density dependence to species abundances

Ryan A. Chisholm; Helene C. Muller-Landau

Understanding the factors that govern the commonness and rarity of individual species is a central challenge in community ecology. Empirical studies have often found that abundance is related to traits associated with competitive ability and suitability to the local environment and, more recently, also to negative conspecific density dependence. Here, we construct a theoretical framework to show how a species’ abundance is, in general, expected to be dependent on its per-capita growth rate when rare and the rate at which its growth rate declines with increasing abundance (strength of stabilization). We argue that per-capita growth rate when rare can be interpreted as competitive ability and that strength of stabilization largely reflects negative conspecific inhibition. We then analyze a simple spatially implicit model in which each species is defined by three parameters that affect its juvenile survival: its generalized competitive effect on others, its generalized response to competition, and an additional negative effect on conspecifics. This model facilitates the stable coexistence of an arbitrarily large number of species and qualitatively reproduces empirical relationships between abundance, competitive ability, and negative conspecific density dependence. Our results provide theoretical support for the combined roles of competitive ability and negative density dependence in the determination of species abundances in real ecosystems, and suggest new avenues of research for understanding abundance in models and in real communities.


Conservation Biology | 2016

The need for long‐term remedies for Indonesia's forest fires

Ryan A. Chisholm; Lahiru S. Wijedasa; Tom Swinfield

In recent months, an environmental disaster with global consequences has been unfolding in Southeast Asia. Unusually extensive and persistent fires in Indonesia have razed thousands of square kilometers of tropical forest and peatland, casting a toxic cloud of smoky haze over the region and dumping billions of tons of CO2 into the atmosphere. Similar fires have occurred annually for decades, but strong El Nino conditions have made this years the worst since 1997. This article is protected by copyright. All rights reserved. Language: en


Archive | 2014

Detecting and projecting changes in forest biomass from plot data

Helene C. Muller-Landau; Matteo Detto; Ryan A. Chisholm; Stephen P. Hubbell; Richard Condit

14.


Theoretical Population Biology | 2014

Species ages in neutral biodiversity models

Ryan A. Chisholm; James P. O’Dwyer

Biogeography seeks to understand the mechanisms that drive biodiversity across long temporal and large spatial scales. Theoretical models of biogeography can be tested by comparing their predictions of quantities such as species ages against empirical estimates. It has previously been claimed that the neutral theory of biodiversity and biogeography predicts species ages that are unrealistically long. Any improved theory of biodiversity must rectify this problem, but first it is necessary to quantify the problem precisely. Here we provide analytical expressions for species ages in neutral biodiversity communities. We analyse a spatially implicit metacommunity model and solve for both the zero-sum and non-zero-sum cases. We explain why our new expressions are, in the context of biodiversity, usually more appropriate than those previously imported from neutral molecular evolution. Because of the time symmetry of the spatially implicit neutral model, our expressions also lead directly to formulas for species persistence times and species lifetimes. We use our new expressions to estimate species ages of forest trees under a neutral model and find that they are about an order of magnitude shorter than those predicted previously but still unrealistically long. In light of our results, we discuss different models of biogeography that may solve the problem of species ages.

Collaboration


Dive into the Ryan A. Chisholm's collaboration.

Top Co-Authors

Avatar

Tak Fung

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Condit

Field Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helene C. Muller-Landau

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lahiru S. Wijedasa

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Kenfack

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge