Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan A. Sponseller is active.

Publication


Featured researches published by Ryan A. Sponseller.


Ecology | 2005

RIPARIAN ZONES INCREASE REGIONAL SPECIES RICHNESS BY HARBORING DIFFERENT, NOT MORE, SPECIES

John L. Sabo; Ryan A. Sponseller; Mark D. Dixon; Kris Gade; Tamara K. Harms; James B. Heffernan; Andrea Jani; Gabrielle Katz; Candan U. Soykan; James Watts; Jill R. Welter

Riparian zones are habitats of critical conservation concern worldwide, as they are known to filter agricultural contaminants, buffer landscapes against erosion, and provide habitat for high numbers of species. Here we test the generality of the notion that riparian habitats harbor more species than adjacent upland habitats. Using previously pub- lished data collected from seven continents and including taxa ranging from Antarctic soil invertebrates to tropical rain forest lianas and primates, we show that riparian habitats do not harbor higher numbers of species, but rather support significantly different species pools altogether. In this way, riparian habitats increase regional ( g-) richness across the globe by .50%, on average. Thus conservation planners can easily increase the number of species protected in a regional portfolio by simply including a river within terrestrial biodiversity reserves. Our analysis also suggests numerous possible improvements for future studies of species richness gradients across riparian and upland habitats. First, ,15% of the studies in our analysis included estimates of more than one taxonomic group of interest. Second, within a given taxonomic group, studies employed variable methodologies and sampling areas in pursuit of richness and turnover estimates. Future analyses of species richness patterns in watersheds should aim to include a more comprehensive suite of taxonomic groups and should measure richness at multiple spatial scales.


Ecology | 2004

HORIZONS IN STREAM BIOGEOCHEMISTRY: FLOWPATHS TO PROGRESS

Stuart G. Fisher; Ryan A. Sponseller; James B. Heffernan

Over the past 50 years, conceptual developments in stream ecology and ecosystem ecology have converged, thanks to biogeochemistry and the recognition that in situ processing on one hand and spatial translation of materials, processes, and influence along flowpaths on the other, unite to generate a holistic picture of ecosystem functioning at the landscape level. Early emphases in stream biogeochemistry involved organic carbon dynamics and whole-ecosystem budgets. These approaches were holistic but cumbersome and laborious and ignored several crucial issues, such as variation in organic matter quality. Nutrient-spiraling approaches rectified this shortcoming and provided a flowpath-specific technique for resolving the dynamics of both inorganic and organic materials and for comparing streams of different sizes and flow rates. The ability of nutrient-spiraling approaches to deal with multiple elements and fluctuating flows, including floods, remains elusive, however. There are several opportunities for stre...


Science of The Total Environment | 2008

Atmospheric deposition of carbon and nutrients across an arid metropolitan area.

Kathleen A. Lohse; Diane Hope; Ryan A. Sponseller; Jonathan O. Allen; Nancy B. Grimm

Urbanization is increasing rapidly in semi-arid environments and is predicted to alter atmospheric deposition of nutrients and pollutants to cities as well as to ecosystems downwind. We examined patterns of wet and coarse dry deposition chemistry over a five-year period at 7 sites across the Central Arizona-Phoenix (CAP) study area, one of two urban sites within the National Science Foundations Long-Term Ecological Research (LTER) program. Wet and dry deposition of organic carbon (oC) were significantly elevated in the urban core; in contrast, mean annual wet and dry fluxes of nitrogen (N) were low (<6 kg ha(-1) yr(-1)) compared to previous estimates and did not differ significantly among sites. Wet deposition of sulfate (SO(4)2-) was high across CAP (mean 1.39 kg ha(-1) yr(-1) as S) and represented the dominant anion in rainfall. Dry deposition rates did not show strong seasonal trends with the exception of oC, which was 3-fold higher in winter than in summer; ammonium (NH4+) deposition was high but more variable. Dry deposition of NO3- and oC was strongly correlated with particulate base cations and dust-derived soluble reactive phosphorus (SRP), suggesting that urban-derived dust is scrubbing the atmosphere of acidic gases and entrained particles and increasing local deposition. Differences between measured and predicted rates of dry N deposition to the urban core may be explained by incomplete collection of gas phase N on surrogate deposition surfaces in this hot and arid environment. The extent of urban enhancement of cations and oC inputs to desert ecosystems appears to be restricted to the urbanized metropolitan area rather than extending far downwind, although a low number of sites make it difficult to resolve this spatial pattern. Nevertheless, wet and dry inputs may be important for biogeochemical cycles in nutrient and carbon-poor desert ecosystems within and near arid cities.


Ecological Applications | 2011

Ecosystem response to nutrient enrichment across an urban airshed in the Sonoran Desert

Sharon J. Hall; Ryan A. Sponseller; Nancy B. Grimm; David P. Huber; Jason P. Kaye; Christopher M. Clark; Scott L. Collins

Rates of nitrogen (N) deposition have increased in arid and semiarid ecosystems, but few studies have examined the impacts of long-term N enrichment on ecological processes in deserts. We conducted a multiyear, nutrient-addition study within 15 Sonoran Desert sites across the rapidly growing metropolitan area of Phoenix, Arizona (USA). We hypothesized that desert plants and soils would be sensitive to N enrichment, but that these effects would vary among functional groups that differ in terms of physiological responsiveness, proximity to surface N sources, and magnitude of carbon (C) or water limitation. Inorganic N additions augmented net potential nitrification in soils, moreso than net potential N mineralization, highlighting the important role of nitrifying microorganisms in the nitrate economy of drylands. Winter annual plants were also responsive to nutrient additions, exhibiting a climate-driven cascade of resource limitation, from little to no production in seasons of low rainfall (winter 2006 and 2007), to moderate N limitation with average precipitation (winter 2009), to limitation by both N and P in a season of above-normal rainfall (winter 2008). Herbaceous production is a potentially important mechanism of N retention in arid ecosystems, capable of immobilizing an amount equal to or greater than that deposited annually to soils in this urban airshed. However, interannual variability in precipitation and abiotic processes that limit the incorporation of detrital organic matter into soil pools may limit this role over the long term. In contrast, despite large experimental additions of N and P over four years, growth of Larrea tridentata, the dominant perennial plant of the Sonoran Desert, was unresponsive to nutrient enrichment, even during wet years. Finally, there did not appear to be strong ecological interactions between nutrient addition and location relative to the city, despite the nearby activity of nearly four million people, perhaps due to loss or transfer pathways that limit long-term N enrichment of ecosystems by the urban atmosphere.


Ecosystems | 2009

Urbanization Alters Soil Microbial Functioning in the Sonoran Desert

Sharon J. Hall; B. Ahmed; P. Ortiz; R. Davies; Ryan A. Sponseller; Nancy B. Grimm

Cities can transform ecosystems in multiple ways, through modification of land use and land cover and through exposure to altered physical, chemical, and biological conditions characteristic of urban environments. We compared the multiple impacts of urbanization on microbial carbon (C) and nutrient cycling in ecosystems across Phoenix, Arizona, one of the fastest growing metropolitan areas in the USA. Land-use/land-cover change from desert to managed ecosystems altered soil microbial functioning, primarily through changes in organic matter supply. Although residential xeriscapes often feature native plants and patchy structure like deserts, spatial heterogeneity in soil biogeochemical cycling was not tightly linked to plant canopies. Grassy lawns exhibited higher nitrogen (N) and phosphorus demand by microorganisms than other landscape types, suggesting that high C quality may effectively sequester these nutrients during periods between fertilization events. Soils in native desert remnants exposed to the urban environment had higher organic matter content, but supported lower activities of extracellular peroxidase enzymes compared to outlying deserts. Experimental N enrichment of desert systems decreased peroxidase activities to a similar extent, suggesting that protected desert remnants within the city are receiving elevated N loads that are altering biogeochemical functioning. Although some microbial processes were spatially homogenized in urban desert remnants, resource islands associated with plants remain the dominant organizing factor for most soil properties. The extent to which native desert preserves within the city functionally resemble managed xeriscapes and lawns suggests that these remnant ecosystems are being ‘domesticated’ by exposure to the urban environment.


Ecology | 2008

THE INFLUENCE OF DRAINAGE NETWORKS ON PATTERNS OF SOIL RESPIRATION IN A DESERT CATCHMENT

Ryan A. Sponseller; Stuart G. Fisher

Hydrologic flow and connectivity act as important determinants of ecological pattern and process in heterogeneous landscapes. Here we examine how the routing of water through the drainage network of an upper Sonoran Desert basin influences landscape patterns of soil respiration (SR) at both seasonal and event-based timescales. At seasonal timescales, SR varied up to 13-fold with downstream position in the drainage network, and annual estimates of CO2 efflux ranged from 185 g C x m(-2) x yr(-1) to 1190 g C x m(-2) x yr(-1) for sites arrayed along the same flow path. Spatial patterns of SR were unrelated to the carbon and water content of surface soils, but rather tracked changes in plant size and productivity, which in turn reflect downstream increases in groundwater availability. The relative importance of precipitation and temperature as drivers of SR also changed with landscape position, with the latter becoming more important in downstream locations. At the scale of individual precipitation events, SR increased up to 30-fold upon rewetting but typically returned to background levels within 24 h, even when soil moisture remained elevated. Unlike patterns observed at seasonal scales, event-based losses of CO2 varied across the landscape as a function of the organic-matter content in surface soils. Results from labile carbon amendments confirm that CO2 losses following precipitation pulses are initially constrained by substrate availability, not soil drying. By mediating spatial patterns of vegetation structure and soil resource availability, drainage networks represent an important physical template upon which belowground processes are organized in desert basins.


Biogeochemistry | 2004

Nutrient mobilization and processing in Sonoran desert riparian soils following artificial re-wetting

James B. Heffernan; Ryan A. Sponseller

Research in river-floodplain systems has emphasized the importance of nutrient delivery by floodwaters, but the mechanisms by which floods make nutrients available are rarely evaluated. Using a laboratory re-wetting experiment, we evaluated the alternative hypotheses that increased nutrient concentrations in riparian groundwater during flash floods are due to (H1) elevated nutrient concentrations in surface floodwaters entering the riparian zone or (H2) re-mobilization of nutrients from riparian soils. We sampled soils from the riparian zone of a 400 m reach of Sycamore Creek, AZ. Two sub-samples from each soil were re-wetted with a solution that mimicked the chemistry of floodwaters, with one sub-sample simultaneously treated with a biocide. We also measured structural characteristics of soils (texture, organic matter, moisture, and extractable nutrients) to investigate relationships between these characteristics and response to re-wetting. Riparian soils exhibited considerable variation in physical and chemical structure. Soil organic matter, moisture, and texture co-varied among samples. Re-wetting increased concentrations of nitrate and ammonium, and decreased SRP, relative to initial concentrations. Live soils were significantly lower in NO3-and SRP than biocide-treated samples. Extractable DIN pools were the best predictors of mobilization, and soil organic matter was strongly correlated with nitrate losses, probably via its relationship with microbial uptake. Nutrient mobilization and processing also varied considerably with depth, lateral position, and among plots. We estimate that 70–80% of N in riparian groundwater during flash floods is re-mobilized from riparian soils, but are unable to reject the hypothesis that flood inputs may be important sources of nutrients to riparian soils over longer time scales.


Ecology | 2013

Denitrification in a large river: consideration of geomorphic controls on microbial activity and community structure

Corianne Tatariw; Elise L. Chapman; Ryan A. Sponseller; Behzad Mortazavi; Jennifer W. Edmonds

Ecological theory argues that the controls over ecosystem processes are structured hierarchically, with broader-scale drivers acting as constraints over the interactions and dynamics at nested levels of organization. In river ecosystems, these interactions may arise from broadscale variation in channel form that directly shapes benthic habitat structure and indirectly constrains resource supply and biological activity within individual reaches. To evaluate these interactions, we identified sediment characteristics, water chemistry, and denitrifier community structure as factors influencing benthic denitrification rates in a sixth-order river that flows through two physiographic provinces and the transitional zone between them, each with distinct geomorphological properties. We found that denitrification rates tracked spatial changes in sediment characteristics and varied seasonally with expected trends in stream primary production. Highest rates were observed during the spring and summer seasons in the physiographic province dominated by fine-grained sediments, illustrating how large-scale changes in river structure can constrain the location of denitrification hotspots. In addition, nirS and nirK community structure each responded differently to variation in channel form, possibly due to changes in dissolved oxygen and organic matter supply. This shift in denitrifier community structure coincident with higher rates of N removal via denitrification suggests that microbial community structure may influence biogeochemical processes.


Ecosystems | 2013

Controls Over Base Cation Concentrations in Stream and River Waters: A Long-Term Analysis on the Role of Deposition and Climate

Richard W. Lucas; Ryan A. Sponseller; Hjalmar Laudon

Significant concern has emerged over the past decades regarding decreases in available base cations (that is, calcium, magnesium, potassium, and sodium) in forest soils and surface waters. Base cations (BCs) are important for buffering against changes in soil and water acidity, and their concentrations can be indicative of environmental management problems such as those linked to acid deposition and land use. Climate variability is also a potentially large factor influencing the dynamics of BCs in soils and surface waters, but our understanding of these interactions at broad scales remains elusive. We used a hierarchical Bayesian model to evaluate the long-term (1990–2010) patterns and drivers of BC concentrations for 60 stream and river monitoring stations across Sweden. Results indicated that the long-term trends in concentration, and the associated environmental drivers, differed among individual BCs and geographical regions. For example, we found that concentrations of Ca2+, Mg2+, K+, and Na+ have decreased in southern Sweden since 1990 and that this is strongly related to concurrent declines in sulfate (SO42−) over the same period of record. In contrast, concentrations of Ca2+, Mg2+, K+, and Na+ in northern Sweden did not exhibit significant directional trends, despite declines in SO42−, nitrate (NO3−), and chloride (Cl−) over the same period. Instead, BC dynamics in the north are characterized by inter-annual variability that is most closely linked to climate variables. Results suggest that the interaction between climatic variability and historical acid deposition determines the regional pattern and long-term trends of BC concentrations across streams and rivers of Sweden. Understanding the strength of the interaction between climate features and historic deposition will greatly improve our ability to predict long-term trends of Ca2+, Mg2+, K+, and Na+ and their inter-annual dynamics in the future.


Global Change Biology | 2007

Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem

Ryan A. Sponseller

Collaboration


Dive into the Ryan A. Sponseller's collaboration.

Top Co-Authors

Avatar

Nancy B. Grimm

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharon J. Hall

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Jason P. Kaye

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Christopher M. Clark

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jill R. Welter

St. Catherine University

View shared research outputs
Top Co-Authors

Avatar

John L. Sabo

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge