Ryan B. Norman
Langley Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ryan B. Norman.
Space Weather-the International Journal of Research and Applications | 2013
Christopher J. Mertens; Matthias M. Meier; Steven Brown; Ryan B. Norman; Xiaojing Xu
[1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway.
Space Weather-the International Journal of Research and Applications | 2016
Christopher J. Mertens; Guillaume Gronoff; Ryan B. Norman; Bryan M. Hayes; Terry C. Lusby; Tore Straume; W. Kent Tobiska; Alex Hands; Keith A. Ryden; E.R. Benton; Scott Wiley; Brad Gersey; R. Wilkins; Xiaojing Xu
Abstract The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 km. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
Life sciences in space research | 2016
John W. Norbury; Walter Schimmerling; Tony C. Slaba; Edouard I. Azzam; Francis F. Badavi; G. Baiocco; E.R. Benton; Veronica Bindi; Eleanor A. Blakely; Steve R. Blattnig; David A. Boothman; Thomas B. Borak; Richard A. Britten; Stan Curtis; Michael Dingfelder; Marco Durante; William S. Dynan; Amelia J. Eisch; S. Robin Elgart; Dudley T. Goodhead; Peter Guida; L. Heilbronn; Christine E. Hellweg; Janice L. Huff; Amy Kronenberg; Chiara La Tessa; Derek I. Lowenstein; J. Miller; Takashi Morita; L. Narici
Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation.
Journal of Computational Physics | 2013
Ryan B. Norman; Steve R. Blattnig
A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.
AIAA SPACE 2014 Conference and Exposition | 2014
Matthew A. Simon; Jeffery Cerro; Kara A. Latorella; Martha Clowdsley; Judith Watson; Cindy Albertson; Ryan B. Norman; Vincent Le Boffe; Steven A. Walker
In order to enable long-duration human exploration beyond low-Earth orbit, the risks associated with exposure of astronaut crews to space radiation must be mitigated with practical and affordable solutions. The space radiation environment beyond the magnetosphere is primarily a combination of two types of radiation: galactic cosmic rays (GCR) and solar particle events (SPE). While mitigating GCR exposure remains an open issue, reducing astronaut exposure to SPEs is achievable through material shielding because they are made up primarily of medium-energy protons. In order to ensure astronaut safety for long durations beyond low-Earth orbit, SPE radiation exposure must be mitigated. However, the increasingly demanding spacecraft propulsive performance for these ambitious missions requires minimal mass and volume radiation shielding solutions which leverage available multi-functional habitat structures and logistics as much as possible. This paper describes the efforts of NASAs RadWorks Advanced Exploration Systems (AES) Project to design two minimal mass SPE radiation shelter concepts leveraging available resources: one based upon reconfiguring habitat interiors to create a centralized protection area and one based upon augmenting individual crew quarters with waterwalls and logistics. Discussion items include the design features of the concepts, a radiation analysis of their implementations, an assessment of the parasitic mass of each concept, and the result of a human in the loop evaluation performed to drive out design and operational issues.
Physical Review C | 2011
C. Zeitlin; John M. Miller; Stephen B. Guetersloh; L. Heilbronn; Akifumi Fukumura; Y. Iwata; T. Murakami; Steven Riese Blattnig; Ryan B. Norman; S. G. Mashnik
We report fragmentation cross sections measured at 0 � for beams of 14 N, 16 O, 20 Ne, and 24 Mg ions, at energies ranging from 290 MeV/nucleon to 1000 MeV/nucleon. Beams were incident on targets of C, CH2, Al, Cu, Sn, and Pb, with the C and CH2 target data used to obtain hydrogentarget cross sections. Using methods established in earlier work, cross sections obtained with both large-acceptance and small-acceptance detectors are extracted from the data and when necessary corrected for acceptance effects. The large-acceptance data yield cross sections for fragments with charges approximately half of the beam charge and above, with minimal corrections. Cross sections for lighter fragments are obtained from small-acceptance spectra, with more significant, modeldependent corrections that account for the fragment angular distributions. Results for both chargechanging and fragment production cross sections are compared to the predictions of the Los Alamos version of the Quark Gluon String Model (LAQGSM) as well as the NUCFRG2 and PHITS models. For all beams and targets, cross sections for fragments as light as He are compared to the models. Estimates of multiplicity-weighted helium production cross sections are obtained from the data and compared to PHITS and LAQGSM predictions. Summary statistics show that the level of agreement between data and predictions is slightly better for PHITS than for either NUCFRG2 or LAQGSM.
18th AIAA Non-Deterministic Approaches Conference | 2016
Luis G. Crespo; Sean P. Kenny; Daniel P. Giesy; Ryan B. Norman; Steve R. Blattnig
This paper develops techniques for predicting the uncertainty range of an output variable given input-output data. These models are called Interval Predictor Models (IPM) because they yield an interval valued function of the input. This paper develops IPMs having a radial basis structure. This structure enables the formal description of (i) the uncertainty in the models parameters, (ii) the predicted output interval, and (iii) the probability that a future observation would fall in such an interval. In contrast to other metamodeling techniques, this probabilistic certi cate of correctness does not require making any assumptions on the structure of the mechanism from which data are drawn. Optimization-based strategies for calculating IPMs having minimal spread while containing all the data are developed. Constraints for bounding the minimum interval spread over the continuum of inputs, regulating the IPMs variation/oscillation, and centering its spread about a target point, are used to prevent data over tting. Furthermore, we develop an approach for using expert opinion during extrapolation. This metamodeling technique is illustrated using a radiation shielding application for space exploration. In this application, we use IPMs to describe the error incurred in predicting the ux of particles resulting from the interaction between a high-energy incident beam and a target.
ieee aerospace conference | 2011
Ryan B. Norman; F. F. Badavi; Steve R. Blattnig; William Atwell
A deterministic suite of radiation transport codes, developed at NASA Langley Research Center (LaRC), which describe the transport of electrons, photons, protons, and heavy ions in condensed media is used to simulate exposures from spectral distributions typical of electrons, protons and carbon-oxygen-sulfur (C-O-S) trapped heavy ions in the Jovian radiation environment. The particle transport suite consists of a coupled electron and photon deterministic transport algorithm (CEPTRN) and a coupled light particle and heavy ion deterministic transport algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means for the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, proton and heavy ion radiation exposure assessments in complex space structures. In this paper, the radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron spectra of the Jovian environment as generated by the Jet Propulsion Laboratory (JPL) Galileo Interim Radiation Electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter System Mission (EJSM), the 105 days at Europa mission fluence energy spectra provided by JPL is used to produce the corresponding dose-depth curve in silicon behind an aluminum shield of 100 mils ( 0.7 g/cm2). The transport suite can also accept ray-traced thickness files from a computer-aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point. In that regard, using a low-fidelity CAD model of the Galileo probe, the transport suite was verified by comparing with Monte Carlo (MC) simulations for orbits JOI-J35 of the Galileo extended mission (1996–2001). For the upcoming EJSM mission with a potential launch date of 2020, the transport suite is used to compute the traditional aluminum-silicon dose-depth calculation as a standard shieldtarget combination output, as well as the shielding response of high charge (Z) shields such as tantalum (Ta). Finally, a shield optimization algorithm is used to guide the instrument designer with the choice of graded-Z shield analysis.
Canadian Journal of Physics | 2010
John W. Norbury; Frank Dick; Ryan B. Norman; Khin Maung Maung
A scalar quantum field theory method is used to calculate differential and total cross-sections for elastic and inelastic scattering in proton–proton collisions. When Mandelstam variables are used, the resulting formulas are simple and can be written in closed form. They display features very typical of elastic and inelastic scattering. The results show good agreement with total cross-section data for η meson production. Thus for this particular example, a simple scalar model can be used in place of a more complicated field theory with spin.
Space Weather-the International Journal of Research and Applications | 2017
Myung-Hee Y. Kim; Steve R. Blattnig; Martha Clowdsley; Ryan B. Norman
Real-time estimation of exposure levels has been considered in NASAs operational strategies and structural capability for the protection of astronauts from exposure to large solar particle events (SPEs). The temporal profile of organ dose rates is also important for the analysis of dose-rate-dependent biological responses and the optimization of radiation shielding and future mission planning. A realistic temporal estimation of exposure profiles relies on: (1) the complete energy spectrum of SPE that defines the boundary condition for radiation transport simulation; (2) the radiation transport simulation with detailed shielding and body geometry models that determines particle transmission at each critical body organ; and (3) the assessment of organ dosimetric quantities and biological risks by applying the corresponding response models. This paper introduces a process of rapidly estimating temporal exposures to SPEs by implementing the distributions of the organ doses and the spectral-shape characterization of the major SPEs. Simultaneously, the unconditional probability exceeding the NASA 30-day limit of a blood-forming organ dose is estimated by taking into account the variability of detailed spectra of SPEs for a given predictor fluence. These temporal evaluations of SPEs can be applied to the development of real-time guidance and protection system on improving mitigation of adverse effects during space missions.