Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan Basom is active.

Publication


Featured researches published by Ryan Basom.


Molecular and Cellular Biology | 2001

Widespread Collaboration of Isw2 and Sin3-Rpd3 Chromatin Remodeling Complexes in Transcriptional Repression

Thomas G. Fazzio; Charles Kooperberg; Jesse P. Goldmark; Cassandra L. Neal; Ryan Basom; Jeffrey J. Delrow; Toshio Tsukiyama

ABSTRACT The yeast Isw2 chromatin remodeling complex functions in parallel with the Sin3-Rpd3 histone deacetylase complex to repress early meiotic genes upon recruitment by Ume6p. For many of these genes, the effect of an isw2 mutation is partially masked by a functional Sin3-Rpd3 complex. To identify the full range of genes repressed or activated by these factors and uncover hidden targets of Isw2-dependent regulation, we performed full genome expression analyses using cDNA microarrays. We find that the Isw2 complex functions mainly in repression of transcription in a parallel pathway with the Sin3-Rpd3 complex. In addition to Ume6 target genes, we find that many Ume6-independent genes are derepressed in mutants lacking functional Isw2 and Sin3-Rpd3 complexes. Conversely, we find thatume6 mutants, but not isw2 sin3 or isw2 rpd3 double mutants, have reduced fidelity of mitotic chromosome segregation, suggesting that one or more functions of Ume6p are independent of Sin3-Rpd3 and Isw2 complexes. Chromatin structure analyses of two nonmeiotic genes reveals increased DNase I sensitivity within their regulatory regions in an isw2 mutant, as seen previously for one meiotic locus. These data suggest that the Isw2 complex functions at Ume6-dependent and -independent loci to create DNase I-inaccessible chromatin structure by regulating the positioning or placement of nucleosomes.


Nature Genetics | 2015

Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy

Michael Zhang; Jane E. Churpek; Siobán B. Keel; Tom Walsh; Ming K. Lee; Keith R. Loeb; Suleyman Gulsuner; Colin C. Pritchard; Marilyn Sanchez-Bonilla; Jeffrey J. Delrow; Ryan Basom; Melissa Forouhar; Boglarka Gyurkocza; Bradford S. Schwartz; Barbara Neistadt; Rafael Marquez; Christopher J. Mariani; Scott A. Coats; Inga Hofmann; R. Coleman Lindsley; David A. Williams; Janis L. Abkowitz; Marshall S. Horwitz; Mary Claire King; Lucy A. Godley; Akiko Shimamura

We report germline missense mutations in ETV6 segregating with the dominant transmission of thrombocytopenia and hematologic malignancy in three unrelated kindreds, defining a new hereditary syndrome featuring thrombocytopenia with susceptibility to diverse hematologic neoplasms. Two variants, p.Arg369Gln and p.Arg399Cys, reside in the highly conserved ETS DNA-binding domain. The third variant, p.Pro214Leu, lies within the internal linker domain, which regulates DNA binding. These three amino acid sites correspond to hotspots for recurrent somatic mutation in malignancies. Functional studies show that the mutations abrogate DNA binding, alter subcellular localization, decrease transcriptional repression in a dominant-negative fashion and impair hematopoiesis. These familial genetic studies identify a central role for ETV6 in hematopoiesis and malignant transformation. The identification of germline predisposition to cytopenias and cancer informs the diagnosis and medical management of at-risk individuals.


Science | 2012

Rescued Tolerant CD8 T Cells Are Preprogrammed to Reestablish the Tolerant State

Andrea Schietinger; Jeffrey J. Delrow; Ryan Basom; Joseph N. Blattman; Philip D. Greenberg

Too Much Tolerance? In the immune system, loss of tolerance to self can have devastating consequences, such as the development of autoimmune diseases. In some cases, however, we may wish to be able to break tolerance, for example, to activate immune cells to fight tumors. Schietinger et al. (p. 723, published online 19 January; see the Perspective by Lee and Jameson) used a combination of genetic mouse models and adoptive immune cell transfers to better understand the mechanisms regulating tolerance in T lymphocytes. In contrast to the prevailing paradigm, the maintenance of T lymphocyte tolerance did not require the continuous presence of antigen. Tolerance was able to be broken when previously tolerized cells were placed in an environment depleted of immune cells. However, when lymphocyte numbers were restored, cells were once again tolerized, even in the absence of antigen. These data, together with gene expression profiling, suggest that tolerance is associated with a specific gene expression program that, although possible to override temporarily, is reimposed by epigenetic mechanisms. Maintenance of T cell tolerance is likely regulated by epigenetic mechanisms. Tolerant self-antigen–specific CD8 T cells fail to proliferate in response to antigen, thereby preventing autoimmune disease. By using an in vivo mouse model, we show that tolerant T cells proliferate and become functional under lymphopenic conditions, even in a tolerogenic environment. However, T cell rescue is only transient, with tolerance reimposed upon lymphorepletion even in the absence of tolerogen (self-antigen), challenging the prevailing paradigm that continuous antigen exposure is critical to maintain tolerance. Genome-wide messenger RNA and microRNA profiling revealed that tolerant T cells have a tolerance-specific gene profile that can be temporarily overridden under lymphopenic conditions but is inevitably reimposed, which suggests epigenetic regulation. These insights into the regulatory mechanisms that maintain or break self-tolerance may lead to new strategies for the treatment of cancer and autoimmunity.


BMC Genomics | 2005

Development of a cDNA array for chicken gene expression analysis

Joan Burnside; Paul E. Neiman; Jianshan Tang; Ryan Basom; Richard Talbot; Mark Aronszajn; David W. Burt; Jeff Delrow

BackgroundThe application of microarray technology to functional genomic analysis in the chicken has been limited by the lack of arrays containing large numbers of genes.ResultsWe have produced cDNA arrays using chicken EST collections generated by BBSRC, University of Delaware and the Fred Hutchinson Cancer Research Center. From a total of 363,838 chicken ESTs representing 24 different adult or embryonic tissues, a set of 11,447 non-redundant ESTs were selected and added to an existing collection of clones (4,162) from immune tissues and a chicken bursal cell line (DT40). Quality control analysis indicates there are 13,007 useable features on the array, including 160 control spots. The array provides broad coverage of mRNAs expressed in many tissues; in addition, clones with expression unique to various tissues can be detected.ConclusionsA chicken multi-tissue cDNA microarray with 13,007 features is now available to academic researchers from [email protected]. Sequence information for all features on the array is in GenBank, and clones can be readily obtained. Targeted users include researchers in comparative and developmental biology, immunology, vaccine and agricultural technology. These arrays will be an important resource for the entire research community using the chicken as a model.


Blood | 2011

Innate signals overcome acquired TCR signaling pathway regulation and govern the fate of human CD161hi CD8α+ semi-invariant T cells

Cameron J. Turtle; Jeff Delrow; Rochelle C. Joslyn; Hillary M. Swanson; Ryan Basom; Laura Tabellini; Colleen Delaney; Shelly Heimfeld; John A. Hansen; Stanley R. Riddell

Type 17 programmed CD161(hi)CD8α(+) T cells contribute to mucosal immunity to bacteria and yeast. In early life, microbial colonization induces proliferation of CD161(hi) cells that is dependent on their expression of a semi-invariant Vα7.2(+) TCR. Although prevalent in adults, CD161(hi)CD8α(+) cells exhibit weak proliferative and cytokine responses to TCR ligation. The mechanisms responsible for the dichotomous response of neonatal and adult CD161(hi) cells, and the signals that enable their effector function, have not been established. We describe acquired regulation of TCR signaling in adult memory CD161(hi)CD8α(+) T cells that is absent in cord CD161(hi) cells and adult CD161(lo) cells. Regulated TCR signaling in CD161(hi) cells was due to profound alterations in TCR signaling pathway gene expression and could be overcome by costimulation through CD28 or innate cytokine receptors, which dictated the fate of their progeny. Costimulation with IL-1β during TCR ligation markedly increased proinflammatory IL-17 production, while IL-12-induced Tc1-like function and restored the response to TCR ligation without costimulation. CD161(hi) cells from umbilical cord blood and granulocyte colony stimulating factor-mobilized leukaphereses differed in frequency and function, suggesting future evaluation of the contribution of CD161(hi) cells in hematopoietic stem cell grafts to transplant outcomes is warranted.


Molecular and Cellular Biology | 2010

Chromatin Remodeling around Nucleosome-Free Regions Leads to Repression of Noncoding RNA Transcription

Adam N. Yadon; Daniel Van de Mark; Ryan Basom; Jeffrey J. Delrow; Iestyn Whitehouse; Toshio Tsukiyama

ABSTRACT Nucleosome-free regions (NFRs) at the 5′ and 3′ ends of genes are general sites of transcription initiation for mRNA and noncoding RNA (ncRNA). The presence of NFRs within transcriptional regulatory regions and the conserved location of transcription start sites at NFRs strongly suggest that the regulation of NFRs profoundly affects transcription initiation. To date, multiple factors are known to facilitate transcription initiation by positively regulating the formation and/or size of NFRs in vivo. However, mechanisms to repress transcription by negatively regulating the size of NFRs have not been identified. We identified four distinct classes of NFRs located at the 5′ and 3′ ends of genes, within open reading frames (ORFs), and far from ORFs. The ATP-dependent chromatin-remodeling enzyme Isw2 was found enriched at all classes of NFRs. Analysis of RNA levels also demonstrated Isw2 is required to repress ncRNA transcription from many of these NFRs. Thus, by the systematic annotation of NFRs across the yeast genome and analysis of ncRNA transcription, we established, for the first time, a mechanism by which NFR size is negatively regulated to repress ncRNA transcription from NFRs. Finally, we provide evidence suggesting that one biological consequence of repression of ncRNA, by Isw2 or by the exosome, is prevention of transcriptional interference of mRNA.


Cell Reports | 2015

Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells.

Chad M. Toledo; Yu Ding; Pia Hoellerbauer; Ryan J. Davis; Ryan Basom; Emily J. Girard; Eunjee Lee; Philip Corrin; Traver Hart; Hamid Bolouri; Jerry Davison; Qing Zhang; Justin Hardcastle; Bruce J. Aronow; Christopher L. Plaisier; Nitin S. Baliga; Jason Moffat; Qi Lin; Xiao Nan Li; Do Hyun Nam; Jeongwu Lee; Steven M. Pollard; Jun Zhu; Jeffery J. Delrow; Bruce E. Clurman; James M. Olson; Patrick J. Paddison

To identify therapeutic targets for glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 knockout (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers). In vitro and in vivo validation of GSC-specific targets revealed several strong hits, including the wee1-like kinase, PKMYT1/Myt1. Mechanistic studies demonstrated that PKMYT1 acts redundantly with WEE1 to inhibit cyclin B-CDK1 activity via CDK1-Y15 phosphorylation and to promote timely completion of mitosis in NSCs. However, in GSCs, this redundancy is lost, most likely as a result of oncogenic signaling, causing GBM-specific lethality.


Cancer Discovery | 2013

Cancer-Specific Requirement for BUB1B/BUBR1 in Human Brain Tumor Isolates and Genetically Transformed Cells

Yu Ding; Christopher G. Hubert; Jacob A. Herman; Philip Corrin; Chad M. Toledo; Kyobi Skutt-Kakaria; Julio Vazquez; Ryan Basom; Bin Zhang; Jennifer K. Risler; Steven M. Pollard; Do Hyun Nam; Jeffery J. Delrow; Jun Zhu; Jeongwu Lee; Jennifer G. DeLuca; James M. Olson; Patrick J. Paddison

UNLABELLED To identify new candidate therapeutic targets for glioblastoma multiforme, we combined functional genetics and glioblastoma network modeling to identify kinases required for the growth of patient-derived brain tumor-initiating cells (BTIC) but that are dispensable to proliferating human neural stem cells (NSC). This approach yielded BUB1B/BUBR1, a critical mitotic spindle checkpoint player, as the top-scoring glioblastoma lethal kinase. Knockdown of BUB1B inhibited expansion of BTIC isolates, both in vitro and in vivo, without affecting proliferation of NSCs or astrocytes. Mechanistic studies revealed that BUB1Bs GLE2p-binding sequence (GLEBS) domain activity is required to suppress lethal kinetochore-microtubule (KT-MT) attachment defects in glioblastoma isolates and genetically transformed cells with altered sister KT dynamics, which likely favor KT-MT instability. These results indicate that glioblastoma tumors have an added requirement for BUB1B to suppress lethal consequences of altered KT function and further suggest that sister KT measurements may predict cancer-specific sensitivity to BUB1B inhibition and perhaps other mitotic targets that affect KT-MT stability. SIGNIFICANCE Currently, no effective therapies are available for glioblastoma, the most frequent and aggressive brain tumor. Our results suggest that targeting the GLEBS domain activity of BUB1B may provide a therapeutic window for glioblastoma, as the GLEBS domain is nonessential in untransformed cells. Moreover, the results further suggest that sister KT distances at metaphase may predict sensitivity to anticancer therapeutics targeting KT function.


Molecular Cancer Research | 2016

Cells Comprising the Prostate Cancer Microenvironment Lack Recurrent Clonal Somatic Genomic Aberrations

Daniella Bianchi-Frias; Ryan Basom; Jeffrey J. Delrow; Ilsa Coleman; Olga Dakhova; Xiaoyu Qu; Min Fang; Omar E. Franco; Nolan G. Ericson; Jason H. Bielas; Simon W. Hayward; Lawrence D. True; Colm Morrissey; Lisha G. Brown; Neil A. Bhowmick; David R. Rowley; Michael Ittmann; Peter S. Nelson

Prostate cancer–associated stroma (CAS) plays an active role in malignant transformation, tumor progression, and metastasis. Molecular analyses of CAS have demonstrated significant changes in gene expression; however, conflicting evidence exists on whether genomic alterations in benign cells comprising the tumor microenvironment (TME) underlie gene expression changes and oncogenic phenotypes. This study evaluates the nuclear and mitochondrial DNA integrity of prostate carcinoma cells, CAS, matched benign epithelium and benign epithelium–associated stroma by whole-genome copy-number analyses, targeted sequencing of TP53, and FISH. Array comparative genomic hybridization (aCGH) of CAS revealed a copy-neutral diploid genome with only rare and small somatic copy-number aberrations (SCNA). In contrast, several expected recurrent SCNAs were evident in the adjacent prostate carcinoma cells, including gains at 3q, 7p, and 8q, and losses at 8p and 10q. No somatic TP53 mutations were observed in CAS. Mitochondrial DNA (mtDNA) extracted from carcinoma cells and stroma identified 23 somatic mtDNA mutations in neoplastic epithelial cells, but only one mutation in stroma. Finally, genomic analyses identified no SCNAs, LOH, or copy-neutral LOH in cultured cancer-associated fibroblasts, which are known to promote prostate cancer progression in vivo. Implications: The gene expression changes observed in prostate cancer–adjacent stroma and the attendant contribution of the stroma to the development and progression of prostate cancer are not due to frequent or recurrent genomic alterations in the TME. Mol Cancer Res; 14(4); 374–84. ©2016 AACR.


Genes & Development | 2016

Genetic requirement for Mycl and efficacy of RNA Pol I inhibition in mouse models of small cell lung cancer

Dong-Wook Kim; Nan Wu; Young Chul Kim; Pei Feng Cheng; Ryan Basom; Dongkyoon Kim; Colin T. Dunn; Anastasia Y. Lee; Kee-Beom Kim; Chang Sup Lee; Andrew Singh; Adi F. Gazdar; Chris R. Harris; Robert N. Eisenman; Kwon-Sik Park; David MacPherson

Small cell lung cancer (SCLC) is a devastating neuroendocrine carcinoma. MYCL (L-Myc) is frequently amplified in human SCLC, but its roles in SCLC progression are poorly understood. We isolated preneoplastic neuroendocrine cells from a mouse model of SCLC and found that ectopic expression of L-Myc, c-Myc, or N-Myc conferred tumor-forming capacity. We focused on L-Myc, which promoted pre-rRNA synthesis and transcriptional programs associated with ribosomal biogenesis. Deletion of Mycl in two genetically engineered models of SCLC resulted in strong suppression of SCLC. The high degree of suppression suggested that L-Myc may constitute a therapeutic target for a broad subset of SCLC. We then used an RNA polymerase I inhibitor to target rRNA synthesis in an autochthonous Rb/p53-deleted mouse SCLC model and found significant tumor inhibition. These data reveal that activation of RNA polymerase I by L-Myc and other MYC family proteins provides an axis of vulnerability for this recalcitrant cancer.

Collaboration


Dive into the Ryan Basom's collaboration.

Top Co-Authors

Avatar

Jeffrey J. Delrow

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Patrick J. Paddison

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Philip Corrin

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Chad M. Toledo

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

James M. Olson

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Jeffery J. Delrow

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Yu Ding

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily J. Girard

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge