Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan Brenke is active.

Publication


Featured researches published by Ryan Brenke.


Proteins | 2006

PIPER: an FFT-based protein docking program with pairwise potentials.

Dima Kozakov; Ryan Brenke; Stephen R. Comeau; Sandor Vajda

The Fast Fourier Transform (FFT) correlation approach to protein–protein docking can evaluate the energies of billions of docked conformations on a grid if the energy is described in the form of a correlation function. Here, this restriction is removed, and the approach is efficiently used with pairwise interaction potentials that substantially improve the docking results. The basic idea is approximating the interaction matrix by its eigenvectors corresponding to the few dominant eigenvalues, resulting in an energy expression written as the sum of a few correlation functions, and solving the problem by repeated FFT calculations. In addition to describing how the method is implemented, we present a novel class of structure‐based pairwise intermolecular potentials. The DARS (Decoys As the Reference State) potentials are extracted from structures of protein–protein complexes and use large sets of docked conformations as decoys to derive atom pair distributions in the reference state. The current version of the DARS potential works well for enzyme–inhibitor complexes. With the new FFT‐based program, DARS provides much better docking results than the earlier approaches, in many cases generating 50% more near‐native docked conformations. Although the potential is far from optimal for antibody–antigen pairs, the results are still slightly better than those given by an earlier FFT method. The docking program PIPER is freely available for noncommercial applications. Proteins 2006.


Proteins | 2010

Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19

Dima Kozakov; David R. Hall; Dmitri Beglov; Ryan Brenke; Stephen R. Comeau; Yang Shen; Keyong Li; Jiefu Zheng; Pirooz Vakili; Ioannis Ch. Paschalidis; Sandor Vajda

Our approach to protein—protein docking includes three main steps. First, we run PIPER, a rigid body docking program based on the Fast Fourier Transform (FFT) correlation approach, extended to use pairwise interactions potentials. Second, the 1000 best energy conformations are clustered, and the 30 largest clusters are retained for refinement. Third, the stability of the clusters is analyzed by short Monte Carlo simulations, and the structures are refined by the medium‐range optimization method SDU. The first two steps of this approach are implemented in the ClusPro 2.0 protein–protein docking server. Despite being fully automated, the last step is computationally too expensive to be included in the server. When comparing the models obtained in CAPRI rounds 13–19 by ClusPro, by the refinement of the ClusPro predictions and by all predictor groups, we arrived at three conclusions. First, for the first time in the CAPRI history, our automated ClusPro server was able to compete with the best human predictor groups. Second, selecting the top ranked models, our current protocol reliably generates high‐quality structures of protein–protein complexes from the structures of separately crystallized proteins, even in the absence of biological information, provided that there is limited backbone conformational change. Third, despite occasional successes, homology modeling requires further improvement to achieve reliable docking results. Proteins 2010.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Structural conservation of druggable hot spots in protein–protein interfaces

Dima Kozakov; David R. Hall; Gwo-Yu Chuang; Regina Cencic; Ryan Brenke; Laurie E. Grove; Dmitri Beglov; Jerry Pelletier; Adrian Whitty; Sandor Vajda

Despite the growing number of examples of small-molecule inhibitors that disrupt protein–protein interactions (PPIs), the origin of druggability of such targets is poorly understood. To identify druggable sites in protein–protein interfaces we combine computational solvent mapping, which explores the protein surface using a variety of small “probe” molecules, with a conformer generator to account for side-chain flexibility. Applications to unliganded structures of 15 PPI target proteins show that the druggable sites comprise a cluster of binding hot spots, distinguishable from other regions of the protein due to their concave topology combined with a pattern of hydrophobic and polar functionality. This combination of properties confers on the hot spots a tendency to bind organic species possessing some polar groups decorating largely hydrophobic scaffolds. Thus, druggable sites at PPI are not simply sites that are complementary to particular organic functionality, but rather possess a general tendency to bind organic compounds with a variety of structures, including key side chains of the partner protein. Results also highlight the importance of conformational adaptivity at the binding site to allow the hot spots to expand to accommodate a ligand of drug-like dimensions. The critical components of this adaptivity are largely local, involving primarily low energy side-chain motions within 6 Å of a hot spot. The structural and physicochemical signature of druggable sites at PPI interfaces is sufficiently robust to be detectable from the structure of the unliganded protein, even when substantial conformational adaptation is required for optimal ligand binding.


Biophysical Journal | 2008

DARS (Decoys As the Reference State) Potentials for Protein-Protein Docking

Gwo-Yu Chuang; Dima Kozakov; Ryan Brenke; Stephen R. Comeau; Sandor Vajda

Decoys As the Reference State (DARS) is a simple and natural approach to the construction of structure-based intermolecular potentials. The idea is generating a large set of docked conformations with good shape complementarity but without accounting for atom types, and using the frequency of interactions extracted from these decoys as the reference state. In principle, the resulting potential is ideal for finding near-native conformations among structures obtained by docking, and can be combined with other energy terms to be used directly in docking calculations. We investigated the performance of various DARS versions for docking enzyme-inhibitor, antigen-antibody, and other type of complexes. For enzyme-inhibitor pairs, DARS provides both excellent discrimination and docking results, even with very small decoy sets. For antigen-antibody complexes, DARS is slightly better than a number of interaction potentials tested, but results are worse than for enzyme-inhibitor complexes. With a few exceptions, the DARS docking results are also good for the other complexes, despite poor discrimination, and we show that the latter is not a correct test for docking accuracy. The analysis of interactions in antigen-antibody pairs reveals that, in constructing pairwise potentials for such complexes, one should account for the asymmetry of hydrophobic patches on the two sides of the interface. Similar asymmetry does occur in the few other complexes with poor DARS docking results.


Proteins | 2007

ClusPro: Performance in CAPRI rounds 6–11 and the new server

Stephen R. Comeau; Dima Kozakov; Ryan Brenke; Yang Shen; Dmitri Beglov; Sandor Vajda

ClusPro is the first fully automated, web‐based program for docking protein structures. Users may upload the coordinate files of two protein structures through ClusPros web interface, or enter the PDB codes of the respective structures. The server performs rigid body docking, energy screening, and clustering to produce models. The program output is a short list of putative complexes ranked according to their clustering properties. ClusPro has been participating in CAPRI since January 2003, submitting predictions within 24 h after a target becomes available. In Rounds 6–11, ClusPro generated acceptable submissions for Targets 22, 25, and 27. In general, acceptable models were obtained for the relatively easy targets without substantial conformational changes upon binding. We also describe the new version of ClusPro that incorporates our recently developed docking program PIPER. PIPER is based on the fast Fourier transform correlation approach, but the method is extended to use pairwise interaction potentials, thereby increasing the number of near‐native docked structures. Proteins 2007.


Journal of Computer-aided Molecular Design | 2009

Detection of ligand binding hot spots on protein surfaces via fragment-based methods: application to DJ-1 and glucocerebrosidase

Melissa R. Landon; Raquel L. Lieberman; Quyen Q. Hoang; Shulin Ju; Jose M. M. Caaveiro; Susan D. Orwig; Dima Kozakov; Ryan Brenke; Gwo Yu Chuang; Dmitry Beglov; Sandor Vajda; Gregory A. Petsko; Dagmar Ringe

The identification of hot spots, i.e., binding regions that contribute substantially to the free energy of ligand binding, is a critical step for structure-based drug design. Here we present the application of two fragment-based methods to the detection of hot spots for DJ-1 and glucocerebrosidase (GCase), targets for the development of therapeutics for Parkinson’s and Gaucher’s diseases, respectively. While the structures of these two proteins are known, binding information is lacking. In this study we employ the experimental multiple solvent crystal structures (MSCS) method and computational fragment mapping (FTMap) to identify regions suitable for the development of pharmacological chaperones for DJ-1 and GCase. Comparison of data derived via MSCS and FTMap also shows that FTMap, a computational method for the identification of fragment binding hot spots, is an accurate and robust alternative to the performance of expensive and difficult crystallographic experiments.


Bioinformatics | 2012

Application of asymmetric statistical potentials to antibody–protein docking

Ryan Brenke; David R. Hall; Gwo-Yu Chuang; Stephen R. Comeau; Tanggis Bohnuud; Dmitri Beglov; Ora Schueler-Furman; Sandor Vajda; Dima Kozakov

MOTIVATION An effective docking algorithm for antibody-protein antigen complex prediction is an important first step toward design of biologics and vaccines. We have recently developed a new class of knowledge-based interaction potentials called Decoys as the Reference State (DARS) and incorporated DARS into the docking program PIPER based on the fast Fourier transform correlation approach. Although PIPER was the best performer in the latest rounds of the CAPRI protein docking experiment, it is much less accurate for docking antibody-protein antigen pairs than other types of complexes, in spite of incorporating sequence-based information on the location of the paratope. Analysis of antibody-protein antigen complexes has revealed an inherent asymmetry within these interfaces. Specifically, phenylalanine, tryptophan and tyrosine residues highly populate the paratope of the antibody but not the epitope of the antigen. RESULTS Since this asymmetry cannot be adequately modeled using a symmetric pairwise potential, we have removed the usual assumption of symmetry. Interaction statistics were extracted from antibody-protein complexes under the assumption that a particular atom on the antibody is different from the same atom on the antigen protein. The use of the new potential significantly improves the performance of docking for antibody-protein antigen complexes, even without any sequence information on the location of the paratope. We note that the asymmetric potential captures the effects of the multi-body interactions inherent to the complex environment in the antibody-protein antigen interface. AVAILABILITY The method is implemented in the ClusPro protein docking server, available at http://cluspro.bu.edu.


Biophysical Journal | 2009

Binding hot spots and amantadine orientation in the influenza a virus M2 proton channel.

Gwo-Yu Chuang; Dima Kozakov; Ryan Brenke; Dmitri Beglov; Frank Guarnieri; Sandor Vajda

Structures of truncated versions of the influenza A virus M2 proton channel have been determined recently by x-ray crystallography in the open conformation of the channel, and by NMR in the closed state. The structures differ in the position of the bound inhibitors. The x-ray structure shows a single amantadine molecule in the middle of the channel, whereas in the NMR structure four drug molecules bind at the channels outer surface. To study this controversy we applied computational solvent mapping, a technique developed for the identification of the most druggable binding hot spots of proteins. The method moves molecular probes--small organic molecules containing various functional groups--around the protein surface, finds favorable positions using empirical free energy functions, clusters the conformations, and ranks the clusters on the basis of the average free energy. The results of the mapping show that in both structures the primary hot spot is an internal cavity overlapping the amantadine binding site seen in the x-ray structure. However, both structures also have weaker hot spots at the exterior locations that bind rimantadine in the NMR structure, although these sites are partially due to the favorable interactions with the interfacial region of the lipid bilayer. As confirmed by docking calculations, the open channel binds amantadine at the more favorable internal site, in good agreement with the x-ray structure. In contrast, the NMR structure is based on a peptide/micelle construct that is able to accommodate the small molecular probes used for the mapping, but has a too narrow pore for the rimantadine to access the internal hot spot, and hence the drug can bind only at the exterior sites.


Proteins | 2012

Minimal ensembles of side chain conformers for modeling protein-protein interactions

Dmitri Beglov; David R. Hall; Ryan Brenke; Maxim V. Shapovalov; Roland L. Dunbrack; Dima Kozakov; Sandor Vajda

The goal of this article is to reduce the complexity of the side chain search within docking problems. We apply six methods of generating side chain conformers to unbound protein structures and determine their ability of obtaining the bound conformation in small ensembles of conformers. Methods are evaluated in terms of the positions of side chain end groups. Results for 68 protein complexes yield two important observations. First, the end‐group positions change less than 1 Å on association for over 60% of interface side chains. Thus, the unbound protein structure carries substantial information about the side chains in the bound state, and the inclusion of the unbound conformation into the ensemble of conformers is very beneficial. Second, considering each surface side chain separately in its protein environment, small ensembles of low‐energy states include the bound conformation for a large fraction of side chains. In particular, the ensemble consisting of the unbound conformation and the two highest probability predicted conformers includes the bound conformer with an accuracy of 1 Å for 78% of interface side chains. As more than 60% of the interface side chains have only one conformer and many others only a few, these ensembles of low‐energy states substantially reduce the complexity of side chain search in docking problems. This approach was already used for finding pockets in protein–protein interfaces that can bind small molecules to potentially disrupt protein–protein interactions. Side‐chain search with the reduced search space will also be incorporated into protein docking algorithms. Proteins 2012.


Nucleic Acids Research | 2012

Computational mapping reveals dramatic effect of Hoogsteen breathing on duplex DNA reactivity with formaldehyde

Tanggis Bohnuud; Dmitri Beglov; Chi Ho Ngan; Brandon S. Zerbe; David R. Hall; Ryan Brenke; Sandor Vajda; Maxim D. Frank-Kamenetskii; Dima Kozakov

Formaldehyde has long been recognized as a hazardous environmental agent highly reactive with DNA. Recently, it has been realized that due to the activity of histone demethylation enzymes within the cell nucleus, formaldehyde is produced endogenously, in direct vicinity of genomic DNA. Should it lead to extensive DNA damage? We address this question with the aid of a computational mapping method, analogous to X-ray and nuclear magnetic resonance techniques for observing weakly specific interactions of small organic compounds with a macromolecule in order to establish important functional sites. We concentrate on the leading reaction of formaldehyde with free bases: hydroxymethylation of cytosine amino groups. Our results show that in B-DNA, cytosine amino groups are totally inaccessible for the formaldehyde attack. Then, we explore the effect of recently discovered transient flipping of Watson–Crick (WC) pairs into Hoogsteen (HG) pairs (HG breathing). Our results show that the HG base pair formation dramatically affects the accessibility for formaldehyde of cytosine amino nitrogens within WC base pairs adjacent to HG base pairs. The extensive literature on DNA interaction with formaldehyde is analyzed in light of the new findings. The obtained data emphasize the significance of DNA HG breathing.

Collaboration


Dive into the Ryan Brenke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge