Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan C. Terrien is active.

Publication


Featured researches published by Ryan C. Terrien.


The Astrophysical Journal | 2013

Habitable Zones Around Main-Sequence Stars: New Estimates

R. Kopparapu; Ramses M. Ramirez; James F. Kasting; Vincent Eymet; Tyler D. Robinson; Suvrath Mahadevan; Ryan C. Terrien; Shawn D. Domagal-Goldman; Victoria S. Meadows; Rohit Deshpande

Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et?al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et?al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO2 atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67?AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H2O and CO2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70?AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200?K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T eff 5000?K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host stars spectral type. We suggest that conservative estimates of the HZ (water-loss and maximum greenhouse limits) should be used for current RV surveys and Kepler mission to obtain a lower limit on ??, so that future flagship missions like TPF-C and Darwin are not undersized. Our model does not include the radiative effects of clouds; thus, the actual HZ boundaries may extend further in both directions than the estimates just given.


The Astronomical Journal | 2013

Target selection for the Apache Point Observatory Galactic Evolution Experiment (APOGEE)

Gail Zasowski; Jennifer A. Johnson; Peter M. Frinchaboy; Steven R. Majewski; David L. Nidever; H. J. Rocha Pinto; Léo Girardi; Brett H. Andrews; S. D. Chojnowski; Kyle M. Cudworth; Kelly M. Jackson; Jeffrey A. Munn; M. F. Skrutskie; Rachael L. Beaton; Cullen H. Blake; Kevin R. Covey; Rohit Deshpande; Courtney R. Epstein; D. Fabbian; Scott W. Fleming; D. A. García–Hernández; A. Herrero; Sankaran Mahadevan; Sz. Mészáros; Mathias Schultheis; K. Sellgren; Ryan C. Terrien; J. van Saders; C. Allende Prieto; Dmitry Bizyaev

The Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a high-resolution infrared spectroscopic survey spanning all Galactic environments (i.e., bulge, disk, and halo), with the principal goal of constraining dynamical and chemical evolution models of the Milky Way. APOGEE takes advantage of the reduced effects of extinction at infrared wavelengths to observe the inner Galaxy and bulge at an unprecedented level of detail. The surveys broad spatial and wavelength coverage enables users of APOGEE data to address numerous Galactic structure and stellar populations issues. In this paper we describe the APOGEE targeting scheme and document its various target classes to provide the necessary background and reference information to analyze samples of APOGEE data with awareness of the imposed selection criteria and resulting sample properties. APOGEEs primary sample consists of ~105 red giant stars, selected to minimize observational biases in age and metallicity. We present the methodology and considerations that drive the selection of this sample and evaluate the accuracy, efficiency, and caveats of the selection and sampling algorithms. We also describe additional target classes that contribute to the APOGEE sample, including numerous ancillary science programs, and we outline the targeting data that will be included in the public data releases.


Optics Express | 2012

Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb

Gabriel Ycas; Franklyn Quinlan; Scott A. Diddams; Steve Osterman; Suvrath Mahadevan; Stephen L. Redman; Ryan C. Terrien; Lawrence W. Ramsey; Chad F. Bender; Brandon Botzer; Steinn Sigurdsson

We describe and characterize a 25 GHz laser frequency comb based on a cavity-filtered erbium fiber mode-locked laser. The comb provides a uniform array of optical frequencies spanning 1450 nm to 1700 nm, and is stabilized by use of a global positioning system referenced atomic clock. This comb was deployed at the 9.2 m Hobby-Eberly telescope at the McDonald Observatory where it was used as a radial velocity calibration source for the fiber-fed Pathfinder near-infrared spectrograph. Stellar targets were observed in three echelle orders over four nights, and radial velocity precision of ∼10 m/s (∼6 MHz) was achieved from the comb-calibrated spectra.


The Astrophysical Journal | 2012

AN H-BAND SPECTROSCOPIC METALLICITY CALIBRATION FOR M DWARFS

Ryan C. Terrien; Suvrath Mahadevan; Chad F. Bender; Rohit Deshpande; Lawrence W. Ramsey; John J. Bochanski

We present an empirical near-infrared (NIR) spectroscopic method for estimating M dwarf metallicities, based on features in the H-band, as well as an implementation of a similar published method in the K-band. We obtained R~2000 NIR spectra of a sample of M dwarfs using the NASA IRTF-SpeX spectrograph, including 22 M dwarf metallicity calibration targets that have FGK companions with known metallicities. The H-band and K-band calibrations provide equivalent fits to the metallicities of these binaries, with an accuracy of +/- 0.12 dex. We derive the first empirically calibrated spectroscopic metallicity estimate for the giant planet-hosting M dwarf GJ 317, confirming its super-solar metallicity. Combining this result with observations of eight other M dwarf planet hosts, we find that M dwarfs with giant planets are preferentially metal-rich compared to those that host less massive planets. Our H-band calibration relies on strongly metallicity-dependent features in the H-band, which will be useful in compositional studies using mid to high resolution NIR M dwarf spectra, such as those produced by multiplexed surveys like SDSS-III APOGEE. These results will also be immediately useful for ongoing spectroscopic surveys of M dwarfs.


The Astrophysical Journal | 2016

The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models

R. Kopparapu; Eric T. Wolf; Jacob Haqq-Misra; Jun Yang; James F. Kasting; Victoria S. Meadows; Ryan C. Terrien; Suvrath Mahadevan

Terrestrial planets at the inner edge of the habitable zone of late-K and M-dwarf stars are expected to be in synchronous rotation, as a consequence of strong tidal interactions with their host stars. Previous global climate model (GCM) studies have shown that, for slowly-rotating planets, strong convection at the substellar point can create optically thick water clouds, increasing the planetary albedo, and thus stabilizing the climate against a thermal runaway. However these studies did not use self-consistent orbital/rotational periods for synchronously rotating planets placed at different distances from the host star. Here we provide new estimates of the inner edge of the habitable zone for synchronously rotating terrestrial planets around late-K and M-dwarf stars using a 3-D Earth-analog GCM with self-consistent relationships between stellar metallicity, stellar effective temperature, and the planetary orbital/rotational period. We find that both atmospheric dynamics and the efficacy of the substellar cloud deck are sensitive to the precise rotation rate of the planet. Around mid-to-late M-dwarf stars with low metallicity, planetary rotation rates at the inner edge of the HZ become faster, and the inner edge of the habitable zone is farther away from the host stars than in previous GCM studies. For an Earth-sized planet, the dynamical regime of the substellar clouds begins to transition as the rotation rate approaches ~10 days. These faster rotation rates produce stronger zonal winds that encircle the planet and smear the substellar clouds around it, lowering the planetary albedo, and causing the onset of the water-vapor greenhouse climatic instability to occur at up to ~25% lower incident stellar fluxes than found in previous GCM studies. For mid-to-late M-dwarf stars with high metallicity and for mid-K to early-M stars, we agree with previous studies.


The Astrophysical Journal | 2013

ERRATUM: “HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES” (2013, ApJ, 765, 131)

R. Kopparapu; Ramses M. Ramirez; James F. Kasting; Vincent Eymet; Tyler D. Robinson; Suvrath Mahadevan; Ryan C. Terrien; Shawn D. Domagal-Goldman; Victoria S. Meadows; Rohit Deshpande

Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO2 atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95–1.67 AU. Here an updated 1D radiative–convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H2O and CO2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with Teff 5000 K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host star’s spectral type. We suggest that conservative estimates of the HZ (water-loss and maximum greenhouse limits) should be used for current RV surveys and Kepler mission to obtain a lower limit on η⊕, so that future flagship missions like TPF-C and Darwin are not undersized. Our model does not include the radiative effects of clouds; thus, the actual HZ boundaries may extend further in both directions than the estimates just given. Key word: planetary systems Online-only material: color figures, supplemental data (FITS) file (tar.gz)


Proceedings of SPIE | 2012

The habitable-zone planet finder: a stabilized fiber-fed NIR spectrograph for the Hobby-Eberly Telescope

Suvrath Mahadevan; Lawrence W. Ramsey; Chad F. Bender; Ryan C. Terrien; Jason T. Wright; Sam Halverson; Frederick R. Hearty; Matthew J. Nelson; Adam Burton; Stephen L. Redman; Steven Neil Osterman; Scott A. Diddams; James F. Kasting; Michael Endl; Rohit Deshpande

We present the scientific motivation and conceptual design for the recently funded Habitable-zone Planet Finder (HPF), a stabilized fiber-fed near-infrared (NIR) spectrograph for the 10 meter class Hobby-Eberly Telescope (HET) that will be capable of discovering low mass planets around M dwarfs. The HPF will cover the NIR Y and J bands to enable precise radial velocities to be obtained on mid M dwarfs, and enable the detection of low mass planets around these stars. The conceptual design is comprised of a cryostat cooled to 200K, a dual fiber-feed with a science and calibration fiber, a gold coated mosaic echelle grating, and a Teledyne Hawaii-2RG (H2RG) *NIR detector with a 1.7μm cutoff. A uranium-neon hollow-cathode lamp is the baseline wavelength calibration source, and we are actively testing laser frequency combs to enable even higher radial velocity precision. We will present the overall instrument system design and integration with the HET, and discuss major system challenges, key choices, and ongoing research and development projects to mitigate risk. We also discuss the ongoing process of target selection for the HPF survey.


The Astrophysical Journal | 2012

The SDSS-HET Survey of Kepler Eclipsing Binaries: Spectroscopic Dynamical Masses of the Kepler-16 Circumbinary Planet Hosts

Chad F. Bender; Suvrath Mahadevan; Rohit Deshpande; Jason T. Wright; Arpita Roy; Ryan C. Terrien; Steinn Sigurdsson; Lawrence W. Ramsey; Donald P. Schneider; Scott W. Fleming

We have used high-resolution spectroscopy to observe the Kepler-16 eclipsing binary as a double-lined system and measure precise radial velocities for both stellar components. These velocities yield a dynamical mass ratio of q = 0.2994 {+-} 0.0031. When combined with the inclination, i 90.{sup 0}3401{sup +0.0016}{sub -0.0019}, measured from the Kepler photometric data by Doyle et al. (D11), we derive dynamical masses for the Kepler-16 components of M{sub A} = 0.654 {+-} 0.017 M{sub Sun} and M{sub B} = 0.1959 {+-} 0.0031 M{sub Sun }, a precision of 2.5% and 1.5%, respectively. Our results confirm at the {approx}2% level the mass-ratio derived by D11 with their photometric-dynamical model (PDM), q = 0.2937 {+-} 0.0006. These are among the most precise spectroscopic dynamical masses ever measured for low-mass stars and provide an important direct test of the results from the PDM technique.


The Astrophysical Journal | 2012

NEW M, L, AND T DWARF COMPANIONS TO NEARBY STARS FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER *

K. L. Luhman; Nicholas P. Loutrel; Nicholas S. McCurdy; Gregory N. Mace; Nicole D. Melso; Kimberly M. Star; Michael D. Young; Ryan C. Terrien; Ian S. McLean; J. Davy Kirkpatrick; Katherine L. Rhode

We present 11 candidate late-type companions to nearby stars identified with data from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All Sky Survey (2MASS). Eight of the candidates are likely to be companions based on their common proper motions with the primaries. The remaining three objects are rejected as companions, one of which is a free-floating T7 dwarf. Spectral types are available for five of the companions, which consist of M2V, M8.5V, L5, T8, and T8. Based on their photometry, the unclassified companions are probably two mid-M dwarfs and one late-M/early-L dwarf. One of the T8 companions, WISE J142320.84+011638.0, has already been reported by Pinfield and coworkers. The other T8 companion, ULAS J095047.28+011734.3, was discovered by Burningham and coworkers through the United Kingdom Infrared Telescope Infrared Deep Sky Survey, but its companionship has not been previously recognized in the literature. The L5 companion, 2MASS J17430860+8526594, is a new member of a class of L dwarfs that exhibit unusually blue near-IR colors. Among the possible mechanisms that have been previously proposed for the peculiar colors of these L dwarfs, low metallicity does not appear to be a viable explanation for 2MASS J17430860+8526594 since our spectrum of the primary suggests that its metallicity is not significantly subsolar.


The Astrophysical Journal | 2012

The Metallicity of the CM Draconis System

Ryan C. Terrien; Scott W. Fleming; Suvrath Mahadevan; Rohit Deshpande; Gregory A. Feiden; Chad F. Bender; Lawrence W. Ramsey

The CM Draconis system comprises two eclipsing mid-M dwarfs of nearly equal mass in a 1.27?day orbit. This well-studied eclipsing binary has often been used for benchmark tests of stellar models, since its components are among the lowest mass stars with well-measured masses and radii ( 1% relative precision). However, as with many other low-mass stars, non-magnetic models have been unable to match the observed radii and effective temperatures for CM Dra at the 5%-10% level. To date, the uncertain metallicity of the system has complicated comparison of theoretical isochrones with observations. In this Letter, we use data from the SpeX instrument on the NASA Infrared Telescope Facility to measure the metallicity of the system during primary and secondary eclipses, as well as out of eclipse, based on an empirical metallicity calibration in the H and K near-infrared (NIR) bands. We derive an [Fe/H] = -0.30 ? 0.12 that is consistent across all orbital phases. The determination of [Fe/H] for this system constrains a key dimension of parameter space when attempting to reconcile model isochrone predictions and observations.

Collaboration


Dive into the Ryan C. Terrien's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chad F. Bender

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Lawrence W. Ramsey

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Arpita Roy

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederick R. Hearty

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Paul Robertson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Scott A. Diddams

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Monson

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge