Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan Chornock is active.

Publication


Featured researches published by Ryan Chornock.


The Astrophysical Journal | 2004

TYPE Ia SUPERNOVA DISCOVERIES AT Z > 1 FROM THE HUBBLE SPACE TELESCOPE: EVIDENCE FOR PAST DECELERATION AND CONSTRAINTS ON DARK ENERGY EVOLUTION 1

Adam G. Riess; Louis-Gregory Strolger; John L. Tonry; Stefano Casertano; Henry C. Ferguson; B. Mobasher; Peter M. Challis; Alexei V. Filippenko; Saurabh W. Jha; Weidong Li; Ryan Chornock; Robert P. Kirshner; Bruno Leibundgut; Mark Dickinson; Mario Livio; Mauro Giavalisco; Charles C. Steidel; Txitxo Benı́tez; Zlatan I. Tsvetanov

We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest redshift SNe Ia known, all at z > 1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these objects and to 170 previously reported SNe Ia have been determined using empirical relations between light-curve shape and luminosity. A purely kinematic interpretation of the SN Ia sample provides evidence at the greater than 99% confidence level for a transition from deceleration to acceleration or, similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13. The data are consistent with the cosmic concordance model of ΩM ≈ 0.3, ΩΛ ≈ 0.7 (χ = 1.06) and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat universe with a cosmological constant, we measure ΩM = 0.29 ± (equivalently, ΩΛ = 0.71). When combined with external flat-universe constraints, including the cosmic microwave background and large-scale structure, we find w = -1.02 ± (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = wρc2. Joint constraints on both the recent equation of state of dark energy, w0, and its time evolution, dw/dz, are a factor of ~8 more precise than the first estimates and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w0 = -1.0, dw/dz = 0) and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the universe.


The Astrophysical Journal | 2016

A 2.4% Determination of the Local Value of the Hubble Constant

Adam G. Riess; Lucas M. Macri; Samantha L. Hoffmann; D. Scolnic; Stefano Casertano; Alexei V. Filippenko; Brad E. Tucker; M. J. Reid; David O. Jones; Jeffrey M. Silverman; Ryan Chornock; Peter M. Challis; Wenlong Yuan; Peter J. Brown; Ryan J. Foley

We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant (H_0) from 3.3% to 2.4%. Improvements come from new, near-infrared observations of Cepheid variables in 11 new hosts of recent SNe~Ia, more than doubling the sample of SNe~Ia having a Cepheid-calibrated distance for a total of 19; these leverage the magnitude-z relation based on 300 SNe~Ia at z<0.15. All 19 hosts and the megamaser system NGC4258 were observed with WFC3, thus nullifying cross-instrument zeropoint errors. Other improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC4258, more Cepheids and a more robust distance to the LMC from late-type DEBs, HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes, and (iv) 2 DEBs in M31. H_0 from each is 72.25+/-2.51, 72.04+/-2.67, 76.18+/-2.37, and 74.50+/-3.27 km/sec/Mpc, respectively. Our best estimate of 73.24+/-1.74 km/sec/Mpc combines the anchors NGC4258, MW, and LMC, and includes systematic errors for a final uncertainty of 2.4%. This value is 3.4 sigma higher than 66.93+/-0.62 km/sec/Mpc predicted by LambdaCDM with 3 neutrinos with mass 0.06 eV and the Planck data, but reduces to 2.1 sigma relative to the prediction of 69.3+/-0.7 km/sec/Mpc with the combination of WMAP+ACT+SPT+BAO, suggesting systematic uncertainties in CMB measurements may play a role in the tension. If we take the conflict between Planck and H_0 at face value, one plausible explanation could involve an additional source of dark radiation in the early Universe in the range of Delta N_eff=0.4-1. We anticipate significant improvements in H_0 from upcoming parallax measurements.


The Astrophysical Journal | 2009

A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER

Adam G. Riess; Lucas M. Macri; Stefano Casertano; Megan L. Sosey; Hubert Lampeitl; Henry C. Ferguson; Alexei V. Filippenko; Saurabh W. Jha; Weidong Li; Ryan Chornock; Devdeep Sarkar

This is the second of two papers reporting results from a program to determine the Hubble constant to ~5% precision from a refurbished distance ladder based on extensive use of differential measurements. Here we report observations of 240 Cepheid variables obtained with the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) Camera 2 through the F160W filter on the Hubble Space Telescope (HST). The Cepheids are distributed across six recent hosts of Type Ia supernovae (SNe Ia) and the maser galaxy NGC 4258, allowing us to directly calibrate the peak luminosities of the SNe Ia from the precise, geometric distance measurements provided by the masers. New features of our measurement include the use of the same instrument for all Cepheid measurements across the distance ladder and homogeneity of the Cepheid periods and metallicities, thus necessitating only a differential measurement of Cepheid fluxes and reducing the largest systematic uncertainties in the determination of the fiducial SN Ia luminosity. In addition, the NICMOS measurements reduce the effects of differential extinction in the host galaxies by a factor of ~5 over past optical data. Combined with a greatly expanded set of 240 SNe Ia at z < 0.1 which define their magnitude-redshift relation, we find H 0 = 74.2 ? 3.6 km s?1 Mpc?1, a 4.8% uncertainty including both statistical and systematic errors. To independently test the maser calibration, we use 10 individual parallax measurements of Galactic Cepheids obtained with the HST fine guidance sensor and find similar results. We show that the factor of 2.2 improvement in the precision of H 0 is a significant aid to the determination of the equation-of-state parameter of dark energy, w = P/(?c 2). Combined with the Wilkinson Microwave Anisotropy Probe five-year measurement of ? M h 2, we find w = ?1.12 ? 0.12 independent of any information from high-redshift SNe Ia or baryon acoustic oscillations (BAO). This result is also consistent with analyses based on the combination of high-redshift SNe Ia and BAO. The constraints on w(z) now including high-redshift SNe Ia and BAO are consistent with a cosmological constant and are improved by a factor of 3 due to the refinement in H 0 alone. We show that future improvements in the measurement of H 0 are likely and should further contribute to multi-technique studies of dark energy.


Monthly Notices of the Royal Astronomical Society | 2011

Nearby supernova rates from the Lick Observatory Supernova Search – II. The observed luminosity functions and fractions of supernovae in a complete sample

Weidong Li; Jesse Leaman; Ryan Chornock; Alexei V. Filippenko; Dovi Poznanski; Mohan Ganeshalingam; Xiaofeng Wang; Maryam Modjaz; Saurabh W. Jha; Ryan J. Foley; Nathan Smith

This is the second paper of a series in which we present new measurements of the observed rates of supernovae (SNe) in the local Universe, determined from the Lick Observatory Supernova Search (LOSS). In this paper, a complete SN sample is constructed, and the observed (uncorrected for host-galaxy extinction) luminosity functions (LFs) of SNe are derived. These LFs solve two issues that have plagued previous rate calculations for nearby SNe: the luminosity distribution of SNe and the host-galaxy extinction. We select a volume-limited sample of 175 SNe, collect photometry for every object, and fit a family of light curves to constrain the peak magnitudes and light-curve shapes. The volume-limited LFs show that they are not well represented by a Gaussian distribution. There are notable differences in the LFs for galaxies of different Hubble types (especially for SNe Ia). We derive the observed fractions for the different subclasses in a complete SN sample, and find significant fractions of SNe II-L (10%), IIb (12%), and IIn (9%) in the SN II sample. Furthermore, we derive the LFs and the observed fractions of different SN subclasses in a magnitudelimited survey with different observation intervals, and find that the LFs are enhanced at the high-luminosity end and appear more “standard” with smaller scatter, and that the LFs and fractions of SNe do not change significantly when the observation interval is shorter than 10 d. We also discuss the LFs in different galaxy sizes and inclinations, and for different SN subclasses. Some notable results are that there is not a strong correlation between the SN LFs and the host-galaxy size, but there might be a preference for SNe IIn to occur in small, late-type spiral galaxies. The LFs in different inclination bins do not provide strong evidence for extreme extinction in highly inclined galaxies, though the sample is still small. The LFs of different SN subclasses show significant differences. We also find that SNe Ibc and IIb come from more luminous galaxies than SNe II-P, while SNe IIn come from less luminous galaxies, suggesting a possible metallicity effect. The limitations and applications of our LFs are also discussed.


Monthly Notices of the Royal Astronomical Society | 2011

Observed Fractions of Core-Collapse Supernova Types and Initial Masses of their Single and Binary Progenitor Stars

Nathan Smith; Weidong Li; Alexei V. Filippenko; Ryan Chornock

We analyse the observed fractions of core-collapse supernova (SN) types from the Lick Observatory Supernova Search (LOSS), and we discuss the corresponding implications for massive star evolution. For a standard initial mass function, observed fractions of SN types cannot be reconciled with the expectations of single-star evolution. The mass range of Wolf–Rayet (WR) stars that shed their hydrogen envelopes via their own mass-loss accounts for less than half of the observed fraction of Type Ibc supernovae (SNe Ibc). The true progenitors of SNe Ibc must extend to a much lower range of initial masses than classical WR stars, and we argue that most SN Ibc and SN IIb progenitors must arise from binary Roche lobe overflow. In this scenario, SNe Ic would still trace higher initial mass and metallicity, because line-driven winds in the WR stage remove the helium layer and propel the transition from SN Ib to Ic. Less massive progenitors of SNe Ib and IIb may not be classical WR stars; they may be underluminous with weak winds, possibly hidden by overluminous mass-gainer companions that could appear as B[e] supergiants or related objects having aspherical circumstellar material. The remaining SN types (II-P, II-L and IIn) need to be redistributed across the full range of initial masses, so that even some very massive single stars retain H envelopes until explosion. We consider the possibility of direct collapse to black holes without visible SNe, but find this hypothesis difficult to accommodate in most scenarios. Major areas of remaining uncertainty are (1) the detailed influence of binary separation, rotation and metallicity; (2) mass differences in progenitors of SNe IIn compared to SNe II-L and II-P; and (3) the fraction of SNe Ic arising from single stars with the help of eruptive mass-loss, how this depends on metallicity and how it relates to diversity within the SN Ic subclass. Continued studies of progenitor stars and their environments in nearby galaxies, accounting for SN types, may eventually test these ideas.


The Astrophysical Journal | 2004

Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7 * **

Brian J. Barris; John L. Tonry; Stephane Blondin; Peter M. Challis; Ryan Chornock; Alejandro Clocchiatti; Alexei V. Filippenko; Peter Marcus Garnavich; Stephen T. Holland; Saurabh W. Jha; Robert P. Kirshner; Kevin Krisciunas; Bruno Leibundgut; Weidong Li; Thomas Matheson; Gajus A. Miknaitis; Adam G. Riess; Brian Paul Schmidt; R. Chris Smith; Jesper Sollerman; Jason Spyromilio; Christopher W. Stubbs; Nicholas B. Suntzeff; H. Aussel; K. C. Chambers; Michael S. Connelley; Dominic G. O’Donovan; J. Patrick Henry; Nick Kaiser; Michael C. Liu

We present photometric and spectroscopic observations of 23 high-redshift supernovae (SNe) spanning a range of z = 0.34-1.03, nine of which are unambiguously classified as Type Ia. These SNe were discovered during the IfA Deep Survey, which began in 2001 September and observed a total of 2.5 deg2 to a depth of approximately m ? 25-26 in RIZ over 9-17 visits, typically every 1-3 weeks for nearly 5 months, with additional observations continuing until 2002 April. We give a brief description of the survey motivations, observational strategy, and reduction process. This sample of 23 high-redshift SNe includes 15 at z ? 0.7, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry et al. (2003), we calculate cosmological parameter density contours that are consistent with the flat universe indicated by the cosmic microwave background (Spergel et al. 2003). Adopting the constraint that ?total = 1.0, we obtain best-fit values of (?m,??) = (0.33, 0.67) using 22 SNe from this survey augmented by the literature compilation. We show that using the empty-beam model for gravitational lensing does not eliminate the need for ?? > 0. Experience from this survey indicates great potential for similar large-scale surveys while also revealing the limitations of performing surveys for z > 1 SNe from the ground.We present photometric and spectroscopic observations of 23 high redshift supernovae spanning a range of z=0.34-1.03, 9 of which are unambiguously classified as Type Ia. These supernovae were discovered during the IfA Deep Survey, which began in September 2001 and observed a total of 2.5 square degrees to a depth of approximately m=25-26 in RIZ over 9-17 visits, typically every 1-3 weeks for nearly 5 months, with additional observations continuing until April 2002. We give a brief description of the survey motivations, observational strategy, and reduction process. This sample of 23 high-redshift supernovae includes 15 at z>0.7, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry et al. (2003), we calculate cosmological parameter density contours which are consistent with the flat universe indicated by the CMB (Spergel et al. 2003). Adopting the constraint that Omega_total = 1.0, we obtain best-fit values of (Omega_m, Omega_Lambda)=(0.33, 0.67) using 22 SNe from this survey augmented by the literature compilation. We show that using the empty-beam model for gravitational lensing does not eliminate the need for Omega_Lambda > 0. Experience from this survey indicates great potential for similar large-scale surveys while also revealing the limitations of performing surveys for z>1 SNe from the ground.


Nature | 2009

Supernova 2007bi as a pair-instability explosion

Avishay Gal-Yam; Paolo A. Mazzali; Eran O. Ofek; Peter E. Nugent; S. R. Kulkarni; Mansi M. Kasliwal; Robert Michael Quimby; A. V. Filippenko; S. B. Cenko; Ryan Chornock; Roni Waldman; D. Kasen; Edward C. Beshore; Andrew J. Drake; R. C. Thomas; J. S. Bloom; Dovi Poznanski; Adam A. Miller; Ryan J. Foley; Jeffrey M. Silverman; Iair Arcavi; Richard S. Ellis; J. S. Deng

Stars with initial masses such that 10 ≤ Minitial ≤ 100, where is the solar mass, fuse progressively heavier elements in their centres, until the core is inert iron. The core then gravitationally collapses to a neutron star or a black hole, leading to an explosion—an iron-core-collapse supernova. By contrast, extremely massive stars with Minitial ≥ 140 (if such exist) develop oxygen cores with masses, Mcore, that exceed 50, where high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron–positron pairs occurs before oxygen ignition and leads to a violent contraction which triggers a nuclear explosion that unbinds the star in a pair-instability supernova. Transitional objects with 100 < Minitial < 140 may end up as iron-core-collapse supernovae following violent mass ejections, perhaps as a result of brief episodes of pair instability, and may already have been identified. Here we report observations of supernova SN 2007bi, a luminous, slowly evolving object located within a dwarf galaxy. We estimate the exploding core mass to be Mcore ≈ 100, in which case theory unambiguously predicts a pair-instability supernova. We show that >3 of radioactive 56Ni was synthesized during the explosion and that our observations are well fitted by models of pair-instability supernovae. This indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic stellar mass limit, which perhaps result from processes similar to those that created the first stars in the Universe.


Nature | 2011

Birth of a relativistic outflow in the unusual γ-ray transient Swift J164449.3+573451

B. A. Zauderer; Edo Berger; Alicia M. Soderberg; Abraham Loeb; Ramesh Narayan; D. A. Frail; G. Petitpas; A. Brunthaler; Ryan Chornock; John M. Carpenter; G. G. Pooley; K. Mooley; S. R. Kulkarni; Raffaella Margutti; D. B. Fox; Ehud Nakar; Nimesh A. Patel; N. H. Volgenau; T. L. Culverhouse; M. F. Bietenholz; M. P. Rupen; W. Max-Moerbeck; Anthony C. S. Readhead; J. Richards; M. Shepherd; S. Storm; Charles L. H. Hull

Active galactic nuclei, which are powered by long-term accretion onto central supermassive black holes, produce relativistic jets with lifetimes of at least one million years, and the observation of the birth of such a jet is therefore unlikely. Transient accretion onto a supermassive black hole, for example through the tidal disruption of a stray star, thus offers a rare opportunity to study the birth of a relativistic jet. On 25 March 2011, an unusual transient source (Swift J164449.3+573451) was found, potentially representing such an accretion event. Here we report observations spanning centimetre to millimetre wavelengths and covering the first month of evolution of a luminous radio transient associated with Swift J164449.3+573451. The radio transient coincides with the nucleus of an inactive galaxy. We conclude that we are seeing a newly formed relativistic outflow, launched by transient accretion onto a million-solar-mass black hole. A relativistic outflow is not predicted in this situation, but we show that the tidal disruption of a star naturally explains the observed high-energy properties and radio luminosity and the inferred rate of such events. The weaker beaming in the radio-frequency spectrum relative to γ-rays or X-rays suggests that radio searches may uncover similar events out to redshifts of z ≈ 6.


The Astrophysical Journal | 2013

An r-process Kilonova Associated with the Short-hard GRB 130603B

Edo Berger; William. Fong; Ryan Chornock

We present ground-based optical and Hubble Space Telescopeoptical and near-IR observations of the shorthard GRB 130603B at z = 0.356, which demonstrate the presence of excess near-IR emission matching the expected brightness and color of an r-process powered trans ient (a “kilonova”). The early afterglow fades rapidly with � . -2.6 at t � 8 - 32 hr post-burst and has a spectral index of � � -1.5 (F� / t � � � ), leading to an expected near-IR brightness at the time of the first HST observation of mF160W(t = 9.4 d) & 29.3 AB mag. Instead, the detected source has mF160W = 25.8± 0.2 AB mag, corresponding to a rest-frame absolute magnitude of MJ � -15.2 mag. The upper limit in the HST optical observations is mF606W & 27.7 AB mag (3�), indicating an unusually red color of V - H & 1.9 mag. Comparing the observed near-IR luminosity to theoretical models of kilonovae produced by ejecta from the merger of an NS-NS or NS-BH binary, we infer an ejecta mass of Mej � 0.03 - 0.08 M⊙ for vej � 0.1 - 0.3c. The inferred mass matches the expectations from numerical merger simulations. The presence of a kilonova provides the strongest evidence to date that short GRBs are produced by compact object mergers, and provides initial insight on t he ejected mass and the primary role that compact object merger may play in the r-process. Equally important, it demonstrates that gravitational wave sources detected by Advanced LIGO/Virgo will be accompanied by optical/near-IR counterparts with unusually red colors, detectable by existing and upcoming large wide-fiel d facilities (e.g., Pan-STARRS, DECam, Subaru, LSST).


Nature | 2012

An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core.

S. Gezari; Ryan Chornock; Armin Rest; M. Huber; Karl Forster; Edo Berger; Peter J. Challis; James D. Neill; D. C. Martin; Timothy M. Heckman; A. Lawrence; Colin Norman; Gautham S. Narayan; Ryan J. Foley; G. H. Marion; D. Scolnic; Laura Chomiuk; Alicia M. Soderberg; K. W. Smith; Robert P. Kirshner; Adam G. Riess; S. J. Smartt; Christopher W. Stubbs; John L. Tonry; William Michael Wood-Vasey; W. S. Burgett; K. C. Chambers; T. Grav; J. N. Heasley; N. Kaiser

The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two ‘relativistic’ candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report a luminous ultraviolet–optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decay of the light curve follow the predicted mass accretion rate and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about two million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.

Collaboration


Dive into the Ryan Chornock's collaboration.

Top Co-Authors

Avatar

Edo Berger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan J. Foley

University of California

View shared research outputs
Top Co-Authors

Avatar

Weidong Li

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam G. Riess

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge