Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan D. Morrison is active.

Publication


Featured researches published by Ryan D. Morrison.


Journal of Pharmacology and Experimental Therapeutics | 2012

The Metabotropic Glutamate Receptor 4-Positive Allosteric Modulator VU0364770 Produces Efficacy Alone and in Combination with l-DOPA or an Adenosine 2A Antagonist in Preclinical Rodent Models of Parkinson's Disease

Carrie K. Jones; Michael Bubser; Analisa D. Thompson; Jonathan W. Dickerson; Nathalie Turle-Lorenzo; Marianne Amalric; Anna L. Blobaum; Thomas M. Bridges; Ryan D. Morrison; Satyawan Jadhav; Darren W. Engers; Kimberly Italiano; Jacob Bode; J. Scott Daniels; Craig W. Lindsley; Corey R. Hopkins; P. Jeffrey Conn; Colleen M. Niswender

Parkinsons disease (PD) is a debilitating neurodegenerative disorder associated with severe motor impairments caused by the loss of dopaminergic innervation of the striatum. Previous studies have demonstrated that positive allosteric modulators (PAMs) of metabotropic glutamate receptor 4 (mGlu4), including N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide, can produce antiparkinsonian-like effects in preclinical models of PD. However, these early mGlu4 PAMs exhibited unsuitable physiochemical properties for systemic dosing, requiring intracerebroventricular administration and limiting their broader utility as in vivo tools to further understand the role of mGlu4 in the modulation of basal ganglia function relevant to PD. In the present study, we describe the pharmacologic characterization of a systemically active mGlu4 PAM, N-(3-chlorophenyl)picolinamide (VU0364770), in several rodent PD models. VU0364770 showed efficacy alone or when administered in combination with l-DOPA or an adenosine 2A (A2A) receptor antagonist currently in clinical development (preladenant). When administered alone, VU0364770 exhibited efficacy in reversing haloperidol-induced catalepsy, forelimb asymmetry-induced by unilateral 6-hydroxydopamine (6-OHDA) lesions of the median forebrain bundle, and attentional deficits induced by bilateral 6-OHDA nigrostriatal lesions in rats. In addition, VU0364770 enhanced the efficacy of preladenant to reverse haloperidol-induced catalepsy when given in combination. The effects of VU0364770 to reverse forelimb asymmetry were also potentiated when the compound was coadministered with an inactive dose of l-DOPA, suggesting that mGlu4 PAMs may provide l-DOPA-sparing activity. The present findings provide exciting support for the potential role of selective mGlu4 PAMs as a novel approach for the symptomatic treatment of PD and a possible augmentation strategy with either l-DOPA or A2A antagonists.


Journal of Medicinal Chemistry | 2010

Design, synthesis, and biological evaluation of halogenated N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor.

Robert R. Lavieri; Sarah A. Scott; Paige E. Selvy; Kwangho Kim; Satyawan Jadhav; Ryan D. Morrison; J. Scott Daniels; H. Alex Brown; Craig W. Lindsley

Phospholipase D (PLD) catalyzes the conversion of phosphatidylcholine to the lipid second messenger phosphatidic acid. Two mammalian isoforms of PLD have been identified, PLD1 and PLD2, which share 53% sequence identity and are subject to different regulatory mechanisms. Inhibition of PLD enzymatic activity leads to increased cancer cell apoptosis, decreased cancer cell invasion, and decreased metastasis of cancer cells; therefore, the development of isoform-specific, PLD inhibitors is a novel approach for the treatment of cancer. Previously, we developed potent dual PLD1/PLD2, PLD1-specific (>1700-fold selective), and moderately PLD2-preferring (>10-fold preferring) inhibitors. Here, we describe a matrix library strategy that afforded the most potent (PLD2 IC(50) = 20 nM) and selective (75-fold selective versus PLD1) PLD2 inhibitor to date, N-(2-(1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)-2-naphthamide (22a), with an acceptable DMPK profile. Thus, these new isoform-selective PLD inhibitors will enable researchers to dissect the signaling roles and therapeutic potential of individual PLD isoforms to an unprecedented degree.


The Journal of Neuroscience | 2012

Novel allosteric agonists of M1 muscarinic acetylcholine receptors induce brain region-specific responses that correspond with behavioral effects in animal models.

Gregory J. Digby; Meredith J. Noetzel; Michael Bubser; Thomas J. Utley; Adam G. Walker; Nellie Byun; Evan P. Lebois; Zixiu Xiang; Douglas J. Sheffler; Hyekyung P. Cho; Albert A. Davis; N.E. Nemirovsky; Sarah E. Mennenga; Bryan W. Camp; Heather A. Bimonte-Nelson; Jacob Bode; K. Italiano; Ryan D. Morrison; Daniels Js; Colleen M. Niswender; M.F. Olive; Craig W. Lindsley; Carrie K. Jones; P.J. Conn

M1 muscarinic acetylcholine receptors (mAChRs) represent a viable target for treatment of multiple disorders of the central nervous system (CNS) including Alzheimers disease and schizophrenia. The recent discovery of highly selective allosteric agonists of M1 receptors has provided a major breakthrough in developing a viable approach for the discovery of novel therapeutic agents that target these receptors. Here we describe the characterization of two novel M1 allosteric agonists, VU0357017 and VU0364572, that display profound differences in their efficacy in activating M1 coupling to different signaling pathways including Ca2+ and β-arrestin responses. Interestingly, the ability of these agents to differentially activate coupling of M1 to specific signaling pathways leads to selective actions on some but not all M1-mediated responses in brain circuits. These novel M1 allosteric agonists induced robust electrophysiological effects in rat hippocampal slices, but showed lower efficacy in striatum and no measureable effects on M1-mediated responses in medial prefrontal cortical pyramidal cells in mice. Consistent with these actions, both M1 agonists enhanced acquisition of hippocampal-dependent cognitive function but did not reverse amphetamine-induced hyperlocomotion in rats. Together, these data reveal that M1 allosteric agonists can differentially regulate coupling of M1 to different signaling pathways, and this can dramatically alter the actions of these compounds on specific brain circuits important for learning and memory and psychosis.


Journal of Medicinal Chemistry | 2011

Discovery, synthesis, and structure-activity relationship development of a series of N-4-(2,5-dioxopyrrolidin-1-yl)phenylpicolinamides (VU0400195, ML182): characterization of a novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu(4)) with oral efficacy in an antiparkinsonian animal model.

Carrie K. Jones; Darren W. Engers; Analisa D. Thompson; Julie R. Field; Anna L. Blobaum; Stacey R. Lindsley; Ya Zhou; Rocco D. Gogliotti; Satyawan Jadhav; Rocio Zamorano; Jim Bogenpohl; Yoland Smith; Ryan D. Morrison; J. Scott Daniels; C. David Weaver; P. Jeffrey Conn; Craig W. Lindsley; Colleen M. Niswender; Corey R. Hopkins

There is an increasing amount of literature data showing the positive effects on preclinical antiparkinsonian rodent models with selective positive allosteric modulators of metabotropic glutamate receptor 4 (mGlu(4)). However, most of the data generated utilize compounds that have not been optimized for druglike properties, and as a consequence, they exhibit poor pharmacokinetic properties and thus do not cross the blood-brain barrier. Herein, we report on a series of N-4-(2,5-dioxopyrrolidin-1-yl)phenylpicolinamides with improved PK properties with excellent potency and selectivity as well as improved brain exposure in rodents. Finally, ML182 was shown to be orally active in the haloperidol induced catalepsy model, a well-established antiparkinsonian model.


Drug Metabolism and Disposition | 2013

Biotransformation of a Novel Positive Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5 Contributes to Seizure-Like Adverse Events in Rats Involving a Receptor Agonism-Dependent Mechanism

Thomas M. Bridges; Jerri M. Rook; Meredith J. Noetzel; Ryan D. Morrison; Ya Zhou; Rocco D. Gogliotti; Paige N. Vinson; Zixiu Xiang; Carrie K. Jones; Colleen M. Niswender; Craig W. Lindsley; Shaun R. Stauffer; P. Jeffrey Conn; J. Scott Daniels

Activation of metabotropic glutamate receptor subtype 5 (mGlu5) represents a novel strategy for therapeutic intervention into multiple central nervous system disorders, including schizophrenia. Recently, a number of positive allosteric modulators (PAMs) of mGlu5 were discovered to exhibit in vivo efficacy in rodent models of psychosis, including PAMs possessing varying degrees of agonist activity (ago-PAMs), as well as PAMs devoid of agonist activity. However, previous studies revealed that ago-PAMs can induce seizure activity and behavioral convulsions, whereas pure mGlu5 PAMs do not induce these adverse effects. We recently identified a potent and selective mGlu5 PAM, VU0403602, that was efficacious in reversing amphetamine-induced hyperlocomotion in rats. The compound also induced time-dependent seizure activity that was blocked by coadministration of the mGlu5 antagonist, 2-methyl-6-(phenylethynyl) pyridine. Consistent with potential adverse effects induced by ago-PAMs, we found that VU0403602 had significant allosteric agonist activity. Interestingly, inhibition of VU0403602 metabolism in vivo by a pan cytochrome P450 (P450) inactivator completely protected rats from induction of seizures. P450-mediated biotransformation of VU0403602 was discovered to produce another potent ago-PAM metabolite-ligand (M1) of mGlu5. Electrophysiological studies in rat hippocampal slices confirmed agonist activity of both M1 and VU0403602 and revealed that M1 can induce epileptiform activity in a manner consistent with its proconvulsant behavioral effects. Furthermore, unbound brain exposure of M1 was similar to that of the parent compound, VU0403602. These findings indicate that biotransformation of mGlu5 PAMs to active metabolite-ligands may contribute to the epileptogenesis observed after in vivo administration of this class of allosteric receptor modulators.


Journal of Medicinal Chemistry | 2013

Development of Dual PLD1/2 and PLD2 Selective Inhibitors From a Common 1,3,8-Triazaspiro[4.5]decane Core: Discovery of ML298 and ML299 that Decrease Invasive Migration in U87-MG Glioblastoma Cells

Matthew C. O’Reilly; Sarah A. Scott; Kyle A. Brown; Thomas Oguin; Paul G. Thomas; J. Scott Daniels; Ryan D. Morrison; H. Alex Brown; Craig W. Lindsley

An iterative parallel synthesis effort identified a PLD2 selective inhibitor, ML298 (PLD1 IC50 > 20000 nM, PLD2 IC50 = 355 nM) and a dual PLD1/2 inhibitor, ML299 (PLD1 IC50 = 6 nM, PLD2 IC50 = 20 nM). SAR studies revealed that a small structural change (incorporation of a methyl group) increased PLD1 activity within this classically PLD2-preferring core and that the effect was enantiospecific. Both probes decreased invasive migration in U87-MG glioblastoma cells.


Journal of Medicinal Chemistry | 2013

Discovery of (R)-(2-Fluoro-4-((-4-methoxyphenyl)ethynyl)phenyl) (3-Hydroxypiperidin-1-yl)methanone (ML337), An mGlu3 Selective and CNS Penetrant Negative Allosteric Modulator (NAM)

Cody J. Wenthur; Ryan D. Morrison; Andrew S. Felts; Katrina A. Smith; Julie L. Engers; Frank W. Byers; J. Scott Daniels; Kyle A. Emmitte; P. Jeffrey Conn; Craig W. Lindsley

A multidimensional, iterative parallel synthesis effort identified a series of highly selective mGlu3 NAMs with submicromolar potency and good CNS penetration. Of these, ML337 resulted (mGlu3 IC50 = 593 nM, mGlu2 IC50 >30 μM) with B:P ratios of 0.92 (mouse) to 0.3 (rat). DMPK profiling and shallow SAR led to the incorporation of deuterium atoms to address a metabolic soft spot, which subsequently lowered both in vitro and in vivo clearance by >50%.


Bioorganic & Medicinal Chemistry Letters | 2012

Further optimization of the K-Cl cotransporter KCC2 antagonist ML077: Development of a highly selective and more potent in vitro probe

Eric Delpire; Aleksandra Baranczak; Alex G. Waterson; Kwangho Kim; Nathan R. Kett; Ryan D. Morrison; J. Scott Daniels; C. David Weaver; Craig W. Lindsley

Further chemical optimization of the MLSCN/MLPCN probe ML077 (KCC2 IC(50)=537 nM) proved to be challenging as the effort was characterized by steep SAR. However, a multi-dimensional iterative parallel synthesis approach proved productive. Herein we report the discovery and SAR of an improved novel antagonist (VU0463271) of the neuronal-specific potassium-chloride cotransporter 2 (KCC2), with an IC(50) of 61 nM and >100-fold selectivity versus the closely related Na-K-2Cl cotransporter 1 (NKCC1) and no activity in a larger panel of GPCRs, ion channels and transporters.


ACS Chemical Neuroscience | 2012

Targeting Selective Activation of M1 for the Treatment of Alzheimer’s Disease: Further Chemical Optimization and Pharmacological Characterization of the M1 Positive Allosteric Modulator ML169

James C. Tarr; Mark Turlington; Paul R Reid; Thomas J. Utley; Douglas J. Sheffler; Hyekyung P. Cho; Rebecca Klar; Tristano Pancani; Michael T. Klein; Thomas M. Bridges; Ryan D. Morrison; Anna L. Blobaum; Zixui Xiang; J. Scott Daniels; Colleen M. Niswender; P. Jeffrey Conn; Michael R. Wood; Craig W. Lindsley

The M(1) muscarinic acetylcholine receptor is thought to play an important role in memory and cognition, making it a potential target for the treatment of Alzheimers disease (AD) and schizophrenia. Moreover, M(1) interacts with BACE1 and regulates its proteosomal degradation, suggesting selective M(1) activation could afford both palliative cognitive benefit as well as disease modification in AD. A key challenge in targeting the muscarinic acetylcholine receptors is achieving mAChR subtype selectivity. Our lab has previously reported the M(1) selective positive allosteric modulator ML169. Herein we describe our efforts to further optimize this lead compound by preparing analogue libraries and probing novel scaffolds. We were able to identify several analogues that possessed submicromolar potency, with our best example displaying an EC(50) of 310 nM. The new compounds maintained complete selectivity for the M(1) receptor over the other subtypes (M(2)-M(5)), displayed improved DMPK profiles, and potentiated the carbachol (CCh)-induced excitation in striatal MSNs. Selected analogues were able to potentiate CCh-mediated nonamyloidogenic APPsα release, further strengthening the concept that M(1) PAMs may afford a disease-modifying role in the treatment of AD.


Drug Metabolism and Disposition | 2012

The Role of Aldehyde Oxidase and Xanthine Oxidase in the Biotransformation of a Novel Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5

Ryan D. Morrison; Blobaum Al; Frank W. Byers; Santomango Ts; Thomas M. Bridges; Stec D; Brewer Ka; Sanchez-Ponce R; Corlew Mm; Rush R; Andrew S. Felts; Jason Manka; Brittney S. Bates; Daryl F. Venable; Alice L. Rodriguez; Carrie K. Jones; Colleen M. Niswender; P.J. Conn; Craig W. Lindsley; Kyle A. Emmitte; Daniels Js

Negative allosteric modulation (NAM) of metabotropic glutamate receptor subtype 5 (mGlu5) represents a therapeutic strategy for the treatment of childhood developmental disorders, such as fragile X syndrome and autism. VU0409106 emerged as a lead compound within a biaryl ether series, displaying potent and selective inhibition of mGlu5. Despite its high clearance and short half-life, VU0409106 demonstrated efficacy in rodent models of anxiety after extravascular administration. However, lack of a consistent correlation in rat between in vitro hepatic clearance and in vivo plasma clearance for the biaryl ether series prompted an investigation into the biotransformation of VU0409106 using hepatic subcellular fractions. An in vitro appraisal in rat, monkey, and human liver S9 fractions indicated that the principal pathway was NADPH-independent oxidation to metabolite M1 (+16 Da). Both raloxifene (aldehyde oxidase inhibitor) and allopurinol (xanthine oxidase inhibitor) attenuated the formation of M1, thus implicating the contribution of both molybdenum hydroxylases in the biotransformation of VU0409106. The use of 18O-labeled water in the S9 experiments confirmed the hydroxylase mechanism proposed, because 18O was incorporated into M1 (+18 Da) as well as in a secondary metabolite (M2; +36 Da), the formation of which was exclusively xanthine oxidase-mediated. This unusual dual and sequential hydroxylase metabolism was confirmed in liver S9 and hepatocytes of multiple species and correlated with in vivo data because M1 and M2 were the principal metabolites detected in rats administered VU0409106. An in vitro-in vivo correlation of predicted hepatic and plasma clearance was subsequently established for VU0409106 in rats and nonhuman primates.

Collaboration


Dive into the Ryan D. Morrison's collaboration.

Top Co-Authors

Avatar

J. Scott Daniels

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge