Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan G. Snodgrass is active.

Publication


Featured researches published by Ryan G. Snodgrass.


Journal of Immunology | 2013

Inflammasome-Mediated Secretion of IL-1β in Human Monocytes through TLR2 Activation; Modulation by Dietary Fatty Acids

Ryan G. Snodgrass; Shurong Huang; Il Whan Choi; John C. Rutledge; Daniel H. Hwang

Many studies have shown that TLR4- and TLR2-deficient mice are protected from high-fat diet–induced inflammation and insulin resistance, suggesting that saturated fatty acids derived from the high-fat diet activate TLR-mediated proinflammatory signaling pathways and induce insulin resistance. However, evidence that palmitic acid, the major dietary saturated fatty acid, can directly activate TLR has not been demonstrated. In this article, we present multiple lines of evidence showing that palmitic acid directly activates TLR2, a major TLR expressed on human monocytes, by inducing heterodimerization with TLR1 in an NADPH oxidase–dependent manner. Dimerization of TLR2 with TLR1 was inhibited by the n-3 fatty acid docosahexaenoic acid. Activation of TLR2 by palmitic acid leads to expression of pro–IL-1β that is cleaved by caspase-1, which is constitutively present in monocytes, to release mature IL-1β. Our results reveal mechanistic insight about how palmitic acid activates TLR2, upregulates NALP3 expression, and induces inflammasome-mediated IL-1β production in human monocytes, which can trigger enhanced inflammation in peripheral tissues, and suggest that these processes are dynamically modulated by the types of dietary fat we consume.


Journal of Biological Chemistry | 2016

Hypoxia Potentiates Palmitate-induced Pro-inflammatory Activation of Primary Human Macrophages.

Ryan G. Snodgrass; Marcel Boß; Ekaterina Zezina; Andreas Weigert; Nathalie Dehne; Ingrid Fleming; Bernhard Brüne; Dmitry Namgaladze

Pro-inflammatory cytokines secreted by adipose tissue macrophages (ATMs) contribute to chronic low-grade inflammation and obesity-induced insulin resistance. Recent studies have shown that adipose tissue hypoxia promotes an inflammatory phenotype in ATMs. However, our understanding of how hypoxia modulates the response of ATMs to free fatty acids within obese adipose tissue is limited. We examined the effects of hypoxia (1% O2) on the pro-inflammatory responses of human monocyte-derived macrophages to the saturated fatty acid palmitate. Compared with normoxia, hypoxia significantly increased palmitate-induced mRNA expression and protein secretion of IL-6 and IL-1β. Although palmitate-induced endoplasmic reticulum stress and nuclear factor κB pathway activation were not enhanced by hypoxia, hypoxia increased the activation of JNK and p38 mitogen-activated protein kinase signaling in palmitate-treated cells. Inhibition of JNK blocked the hypoxic induction of pro-inflammatory cytokine expression, whereas knockdown of hypoxia-induced transcription factors HIF-1α and HIF-2α alone or in combination failed to reduce IL-6 and only modestly reduced IL-1β gene expression in palmitate-treated hypoxic macrophages. Enhanced pro-inflammatory cytokine production and JNK activity under hypoxia were prevented by inhibiting reactive oxygen species generation. In addition, silencing of dual-specificity phosphatase 16 increased normoxic levels of IL-6 and IL-1β and reduced the hypoxic potentiation in palmitate-treated macrophages. The secretome of hypoxic palmitate-treated macrophages promoted IL-6 and macrophage chemoattractant protein 1 expression in primary human adipocytes, which was sensitive to macrophage JNK inhibition. Our results reveal that the coexistence of hypoxia along with free fatty acids exacerbates macrophage-mediated inflammation.


Free Radical Biology and Medicine | 2015

Loss of Nrf2 in bone marrow-derived macrophages impairs antigen-driven CD8(+) T cell function by limiting GSH and Cys availability.

Lisa K. Sha; Weixiao Sha; Laura Kuchler; Andreas Daiber; Annika K. Giegerich; Andreas Weigert; Tilo Knape; Ryan G. Snodgrass; Katrin Schröder; Ralf P. Brandes; Bernhard Brüne; Andreas von Knethen

NF-E2-related factor 2 (Nrf2), known to protect against reactive oxygen species, has recently been reported to resolve acute inflammatory responses in activated macrophages. Consequently, disruption of Nrf2 promotes a proinflammatory macrophage phenotype. In the current study, we addressed the impact of this macrophage phenotype on CD8(+) T cell activation by using an antigen-driven coculture model consisting of Nrf2(-/-) and Nrf2(+/+) bone marrow-derived macrophages (BMDMΦ) and transgenic OT-1 CD8(+) T cells. OT-1 CD8(+) T cells encode a T cell receptor that specifically recognizes MHC class I-presented ovalbumin OVA(257-264) peptide, thereby causing a downstream T cell activation. Interestingly, coculture of OVA(257-264)-pulsed Nrf2(-/-) BMDMΦ with transgenic OT-1 CD8(+) T cells attenuated CD8(+) T cell activation, proliferation, and cytotoxic function. Since the provision of low-molecular-weight thiols such as glutathione (GSH) or cysteine (Cys) by macrophages limits antigen-driven CD8(+) T cell activation, we quantified the amounts of intracellular and extracellular GSH and Cys in both cocultures. Indeed, GSH levels were strongly decreased in Nrf2(-/-) cocultures compared to wild-type counterparts. Supplementation of thiols in Nrf2(-/-) cocultures via addition of glutathione ester, N-acetylcysteine, β-mercaptoethanol, or cysteine itself restored T cell proliferation as well as cytotoxicity by increasing intracellular GSH. Mechanistically, we identified two potential Nrf2-regulated genes involved in thiol synthesis in BMDMΦ: the cystine transporter subunit xCT and the modulatory subunit of the GSH-synthesizing enzyme γ-GCS (GCLM). Pharmacological inhibition of γ-GCS-dependent GSH synthesis as well as knockdown of the cystine antiporter xCT in Nrf2(+/+) BMDMΦ mimicked the effect of Nrf2(-/-) BMDMΦ on CD8(+) T cell function. Our findings demonstrate that reduced levels of GCLM as well as xCT in Nrf2(-/-) BMDMΦ limit GSH availability, thereby inhibiting antigen-induced CD8(+) T cell function.


Journal of Biological Chemistry | 2015

AMP-activated Protein Kinase Suppresses Arachidonate 15-Lipoxygenase Expression in Interleukin 4-polarized Human Macrophages

Dmitry Namgaladze; Ryan G. Snodgrass; Carlo Angioni; Nina Grossmann; Nathalie Dehne; Gerd Geisslinger; Bernhard Brüne

Background: How AMP-activated protein kinase (AMPK) influences IL-4-induced human macrophage polarization is not completely understood. Results: AMPK prevents arachidonate 15-lipoxygenase induction by IL-4 and abolishes the formation of 15-lipoxygenase arachidonic acid metabolites. Conclusion: AMPK activation promotes an anti-inflammatory phenotype in IL-4-stimulated macrophages by reducing arachidonate 15-lipoxygenase expression. Significance: This study supports an anti-inflammatory effect of AMPK activation. Macrophages respond to the Th2 cytokine IL-4 with elevated expression of arachidonate 15-lipoxygenase (ALOX15). Although IL-4 signaling elicits anti-inflammatory responses, 15-lipoxygenase may either support or inhibit inflammatory processes in a context-dependent manner. AMP-activated protein kinase (AMPK) is a metabolic sensor/regulator that supports an anti-inflammatory macrophage phenotype. How AMPK activation is linked to IL-4-elicited gene signatures remains unexplored. Using primary human macrophages stimulated with IL-4, we observed elevated ALOX15 mRNA and protein expression, which was attenuated by AMPK activation. AMPK activators, e.g. phenformin and aminoimidazole-4-carboxamide 1-β-d-ribofuranoside inhibited IL-4-evoked activation of STAT3 while leaving activation of STAT6 and induction of typical IL-4-responsive genes intact. In addition, phenformin prevented IL-4-induced association of STAT6 and Lys-9 acetylation of histone H3 at the ALOX15 promoter. Activating AMPK abolished cellular production of 15-lipoxygenase arachidonic acid metabolites in IL-4-stimulated macrophages, which was mimicked by ALOX15 knockdown. Finally, pretreatment of macrophages with IL-4 for 48 h increased the mRNA expression of the proinflammatory cytokines IL-6, IL-12, CXCL9, and CXCL10 induced by subsequent stimulation with lipopolysaccharide. This response was attenuated by inhibition of ALOX15 or activation of AMPK during incubation with IL-4. In conclusion, limiting ALOX15 expression by AMPK may promote an anti-inflammatory phenotype of IL-4-stimulated human macrophages.


Biochemical Pharmacology | 2016

Cellular analysis of the histamine H4 receptor in human myeloid cells.

Ricardo Capelo; Christoph Lehmann; Khalil Ahmad; Ryan G. Snodgrass; Olaf Diehl; Julia Ringleb; Nicolas Flamand; Andreas Weigert; Holger Stark; Dieter Steinhilber; Astrid S. Kahnt

The human histamine H4 receptor (H4R) is a Gαi/o-coupled receptor which is mainly expressed on hematopoietic cells. Accordingly, the receptor is implicated in the pathology of various diseases such as autoimmune disorders, bronchial asthma and pruritus. Due to complicated receptor pharmacology, the lack of a reliable antibody and limited availability of primary cells expressing the receptor the physiology of this receptor is still poorly understood. Therefore, we aimed to assess absolute receptor mRNA expression and functionality (intracellular Ca(2+) release) in various human myeloid cell types such as granulocytes, monocytes, macrophages and dendritic cells (DCs). This was put into context with the expression of the H1R and H2R. In addition, the influence of various inflammatory stimuli on H4R expression was investigated in macrophages and monocyte-derived DCs. We found that classically activated macrophages treated with pro-inflammatory stimuli down-regulated histamine receptor mRNA expression as did LPS and zymosan A matured monocyte-derived DCs. In contrast, alternatively activated macrophages (IL-4 or IL-13) upregulated H2R and H4R expression compared to controls. Consistent with existing literature, we found eosinophils to be the major source of the H4R. Since availability of primary eosinophils is limited, we developed a cell model based on the differentiated eosinophilic cell line EOL-1, in which H4R pharmacology and physiology may be studied.


Journal of Nutritional Biochemistry | 2016

Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress

Ryan G. Snodgrass; Shurong Huang; Dmitry Namgaladze; Ola Jandali; Tiffany Shao; Spandana Sama; Bernhard Brüne; Daniel H. Hwang

Palmitic acid (C16:0) and TLR2 ligand induce, but docosahexaenoic acid (DHA) inhibits monocyte activation. C16:0 and TLR2 or TLR4 ligand induce certain ER stress markers; thus, we determined whether ER stress induced by these agonists is sufficient to induce monocyte activation, and whether the ER stress is inhibited by DHA which is known to inhibit C16:0- or ligand-induced TLR activation. Monocyte activation and ER stress were assessed by TLR/inflammasome-induced IL-1β production, and phosphorylation of IRE-1 and eIF2 and expression of CHOP, respectively in THP-1 cells. TLR2 ligand Pam3CSK4 induced phosphorylation of eIF2, but not phosphorylation of IRE-1 and CHOP expression. LPS also induced phosphorylation of both IRE-1 and eIF2 but not CHOP expression suggesting that TLR2 or TLR4 ligand, or C16:0 induces different ER stress responses. C16:0-, Pam3CSK4-, or LPS-induced IL-1β production was inhibited by 4-phenylbutyric acid, an inhibitor of ER stress suggesting that IL-1β production induced by these agonists is partly mediated through ER stress. Among two ER stress-inducing molecules, thapsigargin but not tunicamycin led to the expression of pro-IL-1β and secretion of IL-1β. Thus, not all types of ER stress are sufficient to induce inflammasome-mediated IL-1β secretion in monocytes. Although both C16:0 and thapsigargin-induced IL-1β secretion was inhibited by DHA, only C16:0-mediated ER stress was responsive to DHA. These findings suggest that the anti-inflammatory effects of DHA are at least in part mediated through modulating ER homeostasis and that the propensity of ER stress can be differentially modulated by the types of dietary fat we consume.


Biochimica et Biophysica Acta | 2018

Mitochondrial fragmentation in human macrophages attenuates palmitate-induced inflammatory responses

Ekaterina Zezina; Ryan G. Snodgrass; Yannick Schreiber; Sven Zukunft; Christoph Schürmann; Dagmar Meyer zu Heringdorf; Gerd Geisslinger; Ingrid Fleming; Ralf P. Brandes; Bernhard Brüne; Dmitry Namgaladze

Macrophages in adipose tissue contribute to inflammation and the development of insulin resistance in obesity. Exposure of macrophages to saturated fatty acids alters cell metabolism and activates pro-inflammatory signaling. How fatty acids influence macrophage mitochondrial dynamics is unclear. We investigated the mechanism of palmitate-induced mitochondrial fragmentation and its impact on inflammatory responses in primary human macrophages. Fatty acids, such as palmitate, caused mitochondrial fragmentation in human macrophages. Increased mitochondrial fragmentation was also observed in peritoneal macrophages from hyperlipidemic apolipoprotein E knockout mice. Fatty acid-induced mitochondrial fragmentation was independent of the fatty acid chain saturation and required dynamin-related protein 1 (DRP1). Mechanistically, mitochondrial fragmentation was regulated by incorporation of palmitate into mitochondrial phospholipids and their precursors. Palmitate-induced endoplasmic reticulum stress and loss of mitochondrial membrane potential did not contribute to mitochondrial fragmentation. Macrophages treated with palmitate maintained intact mitochondrial respiration and ATP levels. Pharmacological or genetic inhibition of DRP1 enhanced palmitate-induced mitochondrial ROS production, c-Jun phosphorylation, and inflammatory cytokine expression. Our results indicate that mitochondrial fragmentation is a protective mechanism attenuating inflammatory responses induced by palmitate in human macrophages.


Cancer and Metastasis Reviews | 2018

mPGES-1 and ALOX5/-15 in tumor-associated macrophages

Andreas Weigert; Elisabeth Strack; Ryan G. Snodgrass; Bernhard Brüne

The tumor immune landscape gained considerable interest based on the knowledge that genetic aberrations in cancer cells alone are insufficient for tumor development. Macrophages are basically supporting all hallmarks of cancer and owing to their tremendous plasticity they may exert a whole spectrum of anti-tumor and pro-tumor activities. As part of the innate immune response, macrophages are armed to attack tumor cells, alone or in concert with distinct T cell subsets. However, in the tumor microenvironment, they sense nutrient and oxygen gradients, receive multiple signals, and respond to this incoming information with a phenotype shift. Often, their functional output repertoire is shifted to become tumor-supportive. Incoming and outgoing signals are chemically heterogeneous but also comprise lipid mediators. Here, we review the current understanding whereby arachidonate metabolites derived from the cyclooxygenase and lipoxygenase pathways shape the macrophage phenotype in a tumor setting. We discuss these findings in the context of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) expression and concomitant prostaglandin E2 (PGE2) formation. We elaborate the multiple actions of this lipid in affecting macrophage biology, which are sensors for and generators of this lipid. Moreover, we summarize properties of 5-lipoxygenases (ALOX5) and 15-lipoxygenases (ALOX15, ALOX15B) in macrophages and clarify how these enzymes add to the role of macrophages in a dynamically changing tumor environment. This review will illustrate the potential routes how COX-2/mPGES-1 and ALOX5/-15 in macrophages contribute to the development and progression of a tumor.


OncoImmunology | 2018

IL-6 augments IL-4-induced polarization of primary human macrophages through synergy of STAT3, STAT6 and BATF transcription factors

Sahil Gupta; Arpit Jain; Shahzad N. Syed; Ryan G. Snodgrass; Beatrice Pflüger-Müller; Matthias S. Leisegang; Andreas Weigert; Ralf P. Brandes; Ingo Ebersberger; Bernhard Brüne; Dmitry Namgaladze

ABSTRACT Macrophages in the tumor microenvironment respond to complex cytokine signals. How these responses shape the phenotype of tumor-associated macrophages (TAMs) is incompletely understood. Here we explored how cytokines of the tumor milieu, interleukin (IL)-6 and IL-4, interact to influence target gene expression in primary human monocyte-derived macrophages (hMDMs). We show that dual stimulation with IL-4 and IL-6 synergistically modified gene expression. Among the synergistically induced genes are several targets with known pro-tumorigenic properties, such as CC-chemokine ligand 18 (CCL18), transforming growth factor alpha (TGFA) or CD274 (programmed cell death 1 ligand 1 (PD-L1)). We found that transcription factors of the signal transducer and activator of transcription (STAT) family, STAT3 and STAT6 bind regulatory regions of synergistically induced genes in close vicinity. STAT3 and STAT6 co-binding further induces the basic leucine zipper ATF-like transcription factor (BATF), which participates in synergistic induction of target gene expression. Functional analyses revealed increased MCF-7 and MDA-MB 231 tumor cell motility in response to conditioned media from co-treated hMDMs compared to cells incubated with media from single cytokine-treated hMDMs. Flow cytometric analysis of T cell populations upon co-culture with hMDMs polarized by different cytokines indicated that dual stimulation promoted immunosuppressive properties of hMDMs in a PD-L1-dependent manner. Analysis of clinical data revealed increased expression of BATF together with TAM markers in tumor stroma of breast cancer patients as compared to normal breast tissue stroma. Collectively, our findings suggest that IL-4 and IL-6 cooperate to alter the human macrophage transcriptome, endowing hMDMs with pro-tumorigenic properties.


Frontiers in Immunology | 2018

A novel function for 15-lipoxygenases in cholesterol homeostasis and CCL17 production in human macrophages

Ryan G. Snodgrass; Ekaterina Zezina; Dmitry Namgaladze; Sahil Gupta; Carlo Angioni; Gerd Geisslinger; Dieter Lütjohann; Bernhard Brüne

Arachidonate 15-lipoxygenase (ALOX15) and arachidonate 15-lipoxygenase, type B (ALOX15B) catalyze the dioxygenation of polyunsaturated fatty acids and are upregulated in human alternatively activated macrophages (AAMs) induced by Th2 cytokine interleukin-4 (IL-4) and/or interleukin-13. Known primarily for roles in bioactive lipid mediator synthesis, 15-lipoxygenases (15-LOXs) have been implicated in various macrophage functions including efferocytosis and ferroptosis. Using a combination of inhibitors and siRNAs to suppress 15-LOX isoforms, we studied the role of 15-LOXs in cellular cholesterol homeostasis and immune function in naïve and AAMs. Silencing or inhibiting the 15-LOX isoforms impaired sterol regulatory element binding protein (SREBP)-2 signaling by inhibiting SREBP-2 processing into mature transcription factor and reduced SREBP-2 binding to sterol regulatory elements and subsequent target gene expression. Silencing ALOX15B reduced cellular cholesterol and the cholesterol intermediates desmosterol, lanosterol, 24,25-dihydrolanosterol, and lathosterol as well as oxysterols in IL-4-stimulated macrophages. In addition, attenuating both 15-LOX isoforms did not generally affect IL-4 gene expression but rather uniquely impacted IL-4-induced CCL17 production in an SREBP-2-dependent manner resulting in reduced T cell migration to macrophage conditioned media. In conclusion, we identified a novel role for ALOX15B, and to a lesser extent ALOX15, in cholesterol homeostasis and CCL17 production in human macrophages.

Collaboration


Dive into the Ryan G. Snodgrass's collaboration.

Top Co-Authors

Avatar

Daniel H. Hwang

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Bernhard Brüne

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Shurong Huang

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Dmitry Namgaladze

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Andreas Weigert

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Kikumi D. Ono-Moore

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Ekaterina Zezina

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Gerd Geisslinger

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Ralf P. Brandes

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge