Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan J. Farris is active.

Publication


Featured researches published by Ryan J. Farris.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2011

Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals

Ryan J. Farris; Hugo A. Quintero; Michael Goldfarb

This paper describes a powered lower-limb orthosis that is intended to provide gait assistance to spinal cord injured (SCI) individuals by providing assistive torques at both hip and knee joints. The orthosis has a mass of 12 kg and is capable of providing maximum joint torques of 40 Nm with hip and knee joint ranges of motion from 105° flexion to 30 ° extension and 105 ° flexion to 10 ° hyperextension, respectively. A custom distributed embedded system controls the orthosis with power being provided by a lithium polymer battery which provides power for one hour of continuous walking. In order to demonstrate the ability of the orthosis to assist walking, the orthosis was experimentally implemented on a paraplegic subject with a T10 complete injury. Data collected during walking indicates a high degree of step-to-step repeatability of hip and knee trajectories (as enforced by the orthosis) and an average walking speed of 0.8 km/hr. The electrical power required at each hip and knee joint during gait was approximately 25 and 27 W, respectively, contributing to the 117 W overall electrical power required by the device during walking. A video of walking corresponding to the aforementioned data is included in the supplemental material.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2014

A Preliminary Assessment of Legged Mobility Provided by a Lower Limb Exoskeleton for Persons With Paraplegia

Ryan J. Farris; Hugo A. Quintero; Spencer A. Murray; Kevin H. Ha; Clare Hartigan; Michael Goldfarb

This paper presents an assessment of a lower limb exoskeleton for providing legged mobility to people with paraplegia. In particular, the paper presents a single-subject case study comparing legged locomotion using the exoskeleton to locomotion using knee-ankle-foot orthoses (KAFOs) on a subject with a T10 motor and sensory complete injury. The assessment utilizes three assessment instruments to characterize legged mobility, which are the timed up-and-go test, the Ten-Meter Walk Test (10 MWT), and the Six-Minute Walk Test (6 MWT), which collectively assess the subjects ability to stand, walk, turn, and sit. The exertion associated with each assessment instrument was assessed using the Physiological Cost Index. Results indicate that the subject was able to perform the respective assessment instruments 25%, 70%, and 80% faster with the exoskeleton relative to the KAFOs for the timed up-and-go test, the 10 MWT, and the 6 MWT, respectively. Measurements of exertion indicate that the exoskeleton requires 1.6, 5.2, and 3.2 times less exertion than the KAFOs for each respective assessment instrument. The results indicate that the enhancement in speed and reduction in exertion are more significant during walking than during gait transitions.


ieee international conference on rehabilitation robotics | 2011

Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals

Hugo A. Quintero; Ryan J. Farris; Michael Goldfarb

This paper describes a powered lower-limb orthosis that is intended to provide gait assistance to spinal cord injured (SCI) individuals by providing assistive torques at both hip and knee joints, along with a user interface and control structure that enables control of the powered orthosis via upper-body influence. The orthosis and control structure was experimentally implemented on a paraplegic subject (T10 complete) in order to provide a preliminary characterization of its capability to provide basic walking. Data and video is presented from these initial trials, which indicates that the orthosis and controller are able to effectively provide walking within parallel bars at an average speed of 0.8 km/hr.


Topics in Spinal Cord Injury Rehabilitation | 2015

Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton

Clare Hartigan; Casey Kandilakis; Skyler Dalley; Mike Clausen; Edgar Wilson; Scott Morrison; Steven Jefferson-Shawn Etheridge; Ryan J. Farris

BACKGROUND Loss of legged mobility due to spinal cord injury (SCI) is associated with multiple physiological and psychological impacts. Powered exoskeletons offer the possibility of regained mobility and reversal or prevention of the secondary effects associated with immobility. OBJECTIVE This study was conducted to evaluate mobility outcomes for individuals with SCI after 5 gait-training sessions with a powered exoskeleton, with a primary goal of characterizing the ease of learning and usability of the system. METHODS Sixteen subjects with SCI were enrolled in a pilot clinical trial at Shepherd Center, Atlanta, Georgia, with injury levels ranging from C5 complete to L1 incomplete. An investigational Indego exoskeleton research kit was evaluated for ease of use and efficacy in providing legged mobility. Outcome measures of the study included the 10-meter walk test (10 MWT) and the 6-minute walk test (6 MWT) as well as measures of independence including donning and doffing times and the ability to walk on various surfaces. RESULTS At the end of 5 sessions (1.5 hours per session), average walking speed was 0.22 m/s for persons with C5-6 motor complete tetraplegia, 0.26 m/s for T1-8 motor complete paraplegia, and 0.45 m/s for T9-L1 paraplegia. Distances covered in 6 minutes averaged 64 meters for those with C5-6, 74 meters for T1-8, and 121 meters for T9-L1. Additionally, all participants were able to walk on both indoor and outdoor surfaces. CONCLUSIONS Results after only 5 sessions suggest that persons with tetraplegia and paraplegia learn to use the Indego exoskeleton quickly and can manage a variety of surfaces. Walking speeds and distances achieved also indicate that some individuals with paraplegia can quickly become limited community ambulators using this system.


Journal of Medical Devices-transactions of The Asme | 2012

A Method for the Autonomous Control of Lower Limb Exoskeletons for Persons With Paraplegia

Hugo A. Quintero; Ryan J. Farris; Michael Goldfarb

Efforts have recently been reported by several research groups on the development of computer-controlled lower limb orthoses to enable legged locomotion in persons with paraplegia. Such systems must employ a control framework that provides essential movements to the paraplegic user (i.e., sitting, standing, and walking), and ideally enable the user to autonomously command these various movements in a safe, reliable, and intuitive manner. This paper describes a control method that enables a paraplegic user to perform sitting, standing, and walking movements, which are commanded based on postural information measured by the device. The proposed user interface and control structure was implemented on a powered lower limb orthosis, and the system was tested on a paraplegic subject with a T10 complete injury. Experimental data is presented that indicates the ability of the proposed control architecture to provide appropriate user-initiated control of sitting, standing, and walking. The authors also provide a link to a video that qualitatively demonstrates the users ability to independently control basic movements via the proposed control method.


international conference on robotics and automation | 2009

Design and simulation of a joint-coupled orthosis for regulating FES-aided gait

Ryan J. Farris; Hugo A. Quintero; Thomas J. Withrow; Michael Goldfarb

A hybrid functional electrical stimulation (FES)/orthosis system is being developed which combines two channels of (surface-electrode-based) electrical stimulation with a computer-controlled orthosis for the purpose of restoring gait to spinal cord injured (SCI) individuals (albeit with a stability aid, such as a walker). The orthosis is an energetically passive, controllable device which 1) unidirectionally couples hip to knee flexion; 2) aids hip and knee flexion with a spring assist; and 3) incorporates sensors and modulated friction brakes, which are used in conjunction with electrical stimulation for the feedback control of joint (and therefore limb) trajectories. This paper describes the hybrid FES approach and the design of the joint coupled orthosis. A dynamic simulation of an SCI individual using the hybrid approach is described, and results from the simulation are presented that indicate the promise of the JCO approach.


international conference of the ieee engineering in medicine and biology society | 2012

Performance evaluation of a lower limb exoskeleton for stair ascent and descent with Paraplegia

Ryan J. Farris; Hugo A. Quintero; Michael Goldfarb

This paper describes the application of a powered lower limb exoskeleton to aid paraplegic individuals in stair ascent and descent. A brief description of the exoskeleton hardware is provided along with an explanation of the control methodology implemented to allow stair ascent and descent. Tests were performed with a paraplegic individual (T10 complete injury level) and data is presented from multiple trials, including the hip and knee joint torque and power required to perform this functionality. Joint torque and power requirements are summarized, including peak hip and knee joint torque requirements of 0.75 Nm/kg and 0.87 Nm/kg, respectively, and peak hip and knee joint power requirements of approximately 0.65 W/kg and 0.85 W/kg, respectively.


international conference of the ieee engineering in medicine and biology society | 2012

Enhancing stance phase propulsion during level walking by combining fes with a powered exoskeleton for persons with paraplegia

Kevin H. Ha; Hugo A. Quintero; Ryan J. Farris; Michael Goldfarb

This paper describes the design and implementation of a cooperative controller that combines functional electrical stimulation (FES) with a powered lower limb exoskeleton to provide enhanced hip extension during the stance phase of walking in persons with paraplegia. The controller utilizes two sources of actuation: the electric motors of the powered exoskeleton and the users machine (FSM), a set of FES. It consists of a finite-state machine (FSM), a set of proportional-derivative (PD) controllers for the exoskeleton and a cycle-to-cycle adaptive controller for muscle stimulation. Level ground walking is conducted on a single subject with complete T10 paraplegia. Results show a 34% reduction in electrical power requirements at the hip joints during the stance phase of the gait cycle with the cooperative controller compared to using electric motors alone.


international conference of the ieee engineering in medicine and biology society | 2010

Feasibility of a hybrid-FES system for gait restoration in paraplegics

Hugo A. Quintero; Ryan J. Farris; William K. Durfee; Michael Goldfarb

This paper proposes a new configuration for a hybrid-FES gait restoration system, and presents a combination of simulation and experiment that support the feasibility of the proposed approach. Gait simulation results are presented that indicate the majority of load bearing and the majority of power for gait is provided by the legs (i.e., quadriceps muscle stimulation). Based on these simulations, experiments on healthy subjects indicate that the gait restoration approach should be capable of providing long periods of locomotion unimpeded by quadriceps muscle fatigue.


IEEE-ASME Transactions on Mechatronics | 2011

Design of a Multidisc Electromechanical Brake

Ryan J. Farris; Michael Goldfarb

This paper presents the design of an electrically actuated, proportional brake that provides a significantly greater torque-to-weight ratio than a magnetic particle brake (MPB) (considered a benchmark of the state of the art) without sacrificing other characteristics, such as dynamic range, bandwidth, or electrical power consumption. The multidisc brake provides resistive torque through a stack of friction discs, which are compressed by a dc-motor-driven ball screw. Unlike nearly all other proportional brakes, which operate in a normally unlocked mode, the brake presented here is designed such that it may be configured in either a normally unlocked or normally locked mode. The latter enables lower electrical energy consumption and added safety in the event of electrical power failure in certain applications. Following the device description, experimental data are presented to characterize the performance of the brake. The performance characteristics are subsequently compared to those of a commercially available MPB of comparable size.

Collaboration


Dive into the Ryan J. Farris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge