Ryan J. Middleton
Australian Nuclear Science and Technology Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ryan J. Middleton.
Nature Communications | 2014
Richard B. Banati; Ryan J. Middleton; Ronald Chan; Claire R. Hatty; Winnie Wai-Ying Kam; Candice Quin; Manuel B. Graeber; Arvind Parmar; David Zahra; Paul D. Callaghan; Sandra Fok; Nicholas R. Howell; Marie Claude Gregoire; Alexander M Szabo; Tien Pham; Emma Davis; Guo Jun Liu
The evolutionarily conserved peripheral benzodiazepine receptor (PBR), or 18-kDa translocator protein (TSPO), is thought to be essential for cholesterol transport and steroidogenesis, and thus life. TSPO has been proposed as a biomarker of neuroinflammation and a new drug target in neurological diseases ranging from Alzheimer’s disease to anxiety. Here we show that global C57BL/6-Tspotm1GuWu(GuwiyangWurra)-knockout mice are viable with normal growth, lifespan, cholesterol transport, blood pregnenolone concentration, protoporphyrin IX metabolism, fertility and behaviour. However, while the activation of microglia after neuronal injury appears to be unimpaired, microglia from GuwiyangWurraTSPO knockouts produce significantly less ATP, suggesting reduced metabolic activity. Using the isoquinoline PK11195, the ligand originally used for the pharmacological and structural characterization of the PBR/TSPO, and the imidazopyridines CLINDE and PBR111, we demonstrate the utility of GuwiyangWurraTSPO knockouts to provide robust data on drug specificity and selectivity, both in vitro and in vivo, as well as the mechanism of action of putative TSPO-targeting drugs.
Brain Pathology | 2014
Guo Jun Liu; Ryan J. Middleton; Claire R. Hatty; Winnie Wai-Ying Kam; Ronald Chan; Tien Pham; Meredith Harrison-Brown; Eoin Dodson; Kelly Veale; Richard B. Banati
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is expressed in the injured brain. It has become known as an imaging marker of “neuroinflammation” indicating active disease, and is best interpreted as a nondiagnostic biomarker and disease staging tool that refers to histopathology rather than disease etiology. The therapeutic potential of TSPO as a drug target is mostly based on the understanding that it is an outer mitochondrial membrane protein required for the translocation of cholesterol, which thus regulates the rate of steroid synthesis. This pivotal role together with the evolutionary conservation of TSPO has underpinned the belief that any loss or mutation of TSPO should be associated with significant physiological deficits or be outright incompatible with life. However, against prediction, full Tspo knockout mice are viable and across their lifespan do not show the phenotype expected if cholesterol transport and steroid synthesis were significantly impaired. Thus, the “translocation” function of TSPO remains to be better substantiated. Here, we discuss the literature before and after the introduction of the new nomenclature for TSPO and review some of the newer findings. In light of the controversy surrounding the function of TSPO, we emphasize the continued importance of identifying compounds with confirmed selectivity and suggest that TSPO expression is analyzed within specific disease contexts rather than merely equated with the reified concept of “neuroinflammation.”
Cell Cycle | 2017
Guo Jun Liu; Ryan J. Middleton; Winnie Wai-Ying Kam; David Y. Chin; Claire R. Hatty; Ronald Chan; Richard B. Banati
ABSTRACT Recent loss-of-function studies in tissue-specific as well as global Tspo (Translocator Protein 18 kDa) knockout mice have not confirmed its long assumed indispensability for the translocation of cholesterol across the mitochondrial inter-membrane space, a rate-limiting step in steroid biosynthesis. Instead, recent studies in global Tspo knockout mice indicate that TSPO may play a more fundamental role in cellular bioenergetics, which may include the indirect down-stream regulation of transport or metabolic functions. To examine whether overexpression of the TSPO protein alters the cellular bioenergetic profile, Jurkat cells with low to absent endogenous expression were transfected with a TSPO construct to create a stable cell line with de novo expression of exogenous TSPO protein. Expression of TSPO was confirmed by RT-qPCR, radioligand binding with [3H]PK11195 and immunocytochemistry with a TSPO antibody. We demonstrate that TSPO gene insertion causes increased transcription of genes involved in the mitochondrial electron transport chain. Furthermore, TSPO insertion increased mitochondrial ATP production as well as cell excitability, reflected in a decrease in patch clamp recorded rectified K channel currents. These functional changes were accompanied by an increase in cell proliferation and motility, which were inhibited by PK11195, a selective ligand for TSPO. We suggest that TSPO may serve a range of functions that can be viewed as downstream regulatory effects of its primary, evolutionary conserved role in cell metabolism and energy production.
Redox biology | 2016
Calina Betlazar; Ryan J. Middleton; Richard B. Banati; Guo Jun Liu
Responses of the central nervous system (CNS) to stressors and injuries, such as ionising radiation, are modulated by the concomitant responses of the brains innate immune effector cells, microglia. Exposure to high doses of ionising radiation in brain tissue leads to the expression and release of biochemical mediators of ‘neuroinflammation’, such as pro-inflammatory cytokines and reactive oxygen species (ROS), leading to tissue destruction. Contrastingly, low dose ionising radiation may reduce vulnerability to subsequent exposure of ionising radiation, largely through the stimulation of adaptive responses, such as antioxidant defences. These disparate responses may be reflective of non-linear differential microglial activation at low and high doses, manifesting as an anti-inflammatory or pro-inflammatory functional state. Biomarkers of pathology in the brain, such as the mitochondrial Translocator Protein 18 kDa (TSPO), have facilitated in vivo characterisation of microglial activation and ‘neuroinflammation’ in many pathological states of the CNS, though the exact function of TSPO in these responses remains elusive. Based on the known responsiveness of TSPO expression to a wide range of noxious stimuli, we discuss TSPO as a potential biomarker of radiation-induced effects.
Biochemical Society Transactions | 2015
Ryan J. Middleton; Guo Jun Liu; Richard B. Banati
The highly conserved 18-kDa translocator protein (TSPO) or peripheral benzodiazepine receptor (PBR), is being investigated as a diagnostic and therapeutic target for disease conditions ranging from inflammation to neurodegeneration and behavioural illnesses. Many functions have been attributed to TSPO/PBR including a role in the mitochondrial permeability transition pore (MPTP), steroidogenesis and energy metabolism. In this review, we detail the recent developments in determining the physiological role of TSPO/PBR, specifically based on data obtained from the recently generated Tspo knockout mouse models. In addition to defining the role of TSPO/PBR, we also describe the value of Tspo knockout mice in determining the selectivity, specificity and presence of any off-target effects of TSPO/PBR ligands.
Scientific Reports | 2015
John Dodson; Eoin Dodson; Richard B. Banati; Xiaoqiang Li; Pia Atahan; Songmei Hu; Ryan J. Middleton; Xinying Zhou; Sun Nan
The origins of domesticated sheep (Ovis sp.) in China remain unknown. Previous workers have speculated that sheep may have been present in China up to 7000 years ago, however many claims are based on associations with archaeological material rather than independent dates on sheep material. Here we present 7 radiocarbon dates on sheep bone from Inner Mongolia, Ningxia and Shaanxi provinces. DNA analysis on one of the bones confirms it is Ovis sp. The oldest ages are about 4700 to 4400 BCE and are thus the oldest objectively dated Ovis material in eastern Asia. The graphitisised bone collagen had δ13C values indicating some millet was represented in the diet. This probably indicates sheep were in a domestic setting where millet was grown. The younger samples had δ13C values indicating that even more millet was in the diet, and this was likely related to changes in foddering practices
Gene | 2017
Guo Jun Liu; Ryan J. Middleton; Richard B. Banati
Despite continued interest in the 18kDa translocator protein (PBR/TSPO) as a biomarker and a therapeutic target for a range of diseases, its functional role, such as in the steroid synthesis pathway and energy metabolism has either become contentious or remains to be described more precisely. The PBR/TSPO gene consists of four exons, while a shorter isoform termed PBR-S lacks exon 2. The PBR-S 102-codon open reading frame differs to that of PBR/TSPO, resulting in a protein that is completely unrelated to PBR/TSPO. To our knowledge, PBR-S protein has never been described and has no known or proposed function. To obtain possible clues on the role of this uncharacterised protein, we compared the subcellular distribution of PBR-S to that of PBR/TSPO. By expressing fluorescently tagged PBR/TSPO, we confirmed that full-length PBR/TSPO co-localises with mitochondria in HeLa, HEK-293, MDA-MB-231, BJ and U87-MG human cell lines. Unlike the strictly mitochondrial localisation of PBR/TSPO, PBR-S has a punctate distribution throughout the cytosol that co-localises with lysosomes in HeLa, HEK-293, MDA-MB-231, BJ and U87-MG cells. In summary, within the cell lines examined we confirm mitochondria rather than occasionally reported other localisations, such as the cell nucleus, to be the only site where PBR/TSPO resides. Due to the lack of any shared protein sequences and the different subcellular locations, we suggest that the previously uncharacterised PBR-S protein variant of the PBR/TSPO gene is likely to serve a different yet to be discovered function compared to PBR/TSPO.
International Journal of Molecular Sciences | 2018
Calina Betlazar; Meredith Harrison-Brown; Ryan J. Middleton; Richard B. Banati; Guo Jun Liu
The inducible expression of the mitochondrial translocator protein 18 kDa (TSPO) by activated microglia is a prominent, regular feature of acute and chronic-progressive brain pathology. This expression is also the rationale for the continual development of new TSPO binding molecules for the diagnosis of “neuroinflammation” by molecular imaging. However, there is in the normal brain an ill-defined, low-level constitutive expression of TSPO. Taking advantage of healthy TSPO knockout mouse brain tissue to validate TSPO antibody specificity, this study uses immunohistochemistry to determine the regional distribution and cellular sources of TSPO in the normal mouse brain. Fluorescence microscopy revealed punctate TSPO immunostaining in vascular endothelial cells throughout the brain. In the olfactory nerve layers and glomeruli of the olfactory bulb, choroid plexus and ependymal layers, we confirm constitutive TSPO expression levels similar to peripheral organs, while some low TSPO expression is present in regions of known neurogenesis, as well as cerebellar Purkinje cells. The distributed-sparse expression of TSPO in endothelial mitochondria throughout the normal brain can be expected to give rise to a low baseline signal in TSPO molecular imaging studies. Finally, our study emphasises the need for valid and methodologically robust verification of the selectivity of TSPO ligands through the use of TSPO knockout tissues.
Archive | 2016
Ryan J. Middleton; Richard B. Banati; Guo Jun Liu
DNA and Cell Biology | 2017
Ryan J. Middleton; Winnie Wai-Ying Kam; Guo Jun Liu; Richard B. Banati