Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan J. Morris is active.

Publication


Featured researches published by Ryan J. Morris.


Physical Review Letters | 2014

Inherent Variability in the Kinetics of Autocatalytic Protein Self-Assembly

Juraj Szavits-Nossan; Kym Eden; Ryan J. Morris; Cait E. MacPhee; Martin R. Evans; Rosalind J. Allen

In small volumes, the kinetics of filamentous protein self-assembly is expected to show significant variability, arising from intrinsic molecular noise. This is not accounted for in existing deterministic models. We introduce a simple stochastic model including nucleation and autocatalytic growth via elongation and fragmentation, which allows us to predict the effects of molecular noise on the kinetics of autocatalytic self-assembly. We derive an analytic expression for the lag-time distribution, which agrees well with experimental results for the fibrillation of bovine insulin. Our expression decomposes the lag-time variability into contributions from primary nucleation and autocatalytic growth and reveals how each of these scales with the key kinetic parameters. Our analysis shows that significant lag-time variability can arise from both primary nucleation and from autocatalytic growth and should provide a way to extract mechanistic information on early-stage aggregation from small-volume experiments.


Nature Communications | 2013

Mechanistic and environmental control of the prevalence and lifetime of amyloid oligomers

Ryan J. Morris; Kym Eden; Reuben Yarwood; Line Jourdain; Rosalind J. Allen; Cait E. MacPhee

Amyloid fibrils are self-assembled protein aggregates implicated in a number of human diseases. Fragmentation-dominated models for the self-assembly of amyloid fibrils have had important successes in explaining the kinetics of amyloid fibril formation but predict fibril length distributions that do not match experiments. Here we resolve this inconsistency using a combination of experimental kinetic measurements and computer simulations. We provide evidence for a structural transition that occurs at a critical fibril mass concentration, or ‘CFC’, above which fragmentation of fibrils is suppressed. Our simulations predict the formation of distinct fibril length distributions above and below the CFC, which we confirm by electron microscopy. These results point to a new picture of amyloid fibril growth in which structural transitions that occur during self-assembly have strong effects on the final population of aggregate species with small, and potentially cytotoxic, oligomers dominating for long periods of time at protein concentrations below the CFC.


bioRxiv | 2018

Formation of functional, non-amyloidogenic fibres by recombinant Bacillus subtilis TasA

Elliot Erskine; Ryan J. Morris; Marieke Schor; Chris Earl; Rachel M. C. Gillespie; Keith M. Bromley; Tetyana Sukhodub; Lauren Clark; Paul K. Fyfe; Louise C. Serpell; Nicola R. Stanley-Wall; Cait E. MacPhee

Bacterial biofilms are communities of microbial cells encased within a self-produced polymeric matrix. In the Bacillus subtilis biofilm matrix the extracellular fibres of TasA are essential. Here a recombinant expression system allows interrogation of TasA, revealing that monomeric and fibre forms of TasA have identical secondary structure, suggesting that fibrous TasA is a linear assembly of globular units. Recombinant TasA fibres form spontaneously, and share the biological activity of TasA fibres extracted from B. subtilis, whereas a TasA variant restricted to a monomeric form is inactive and subjected to extracellular proteolysis. The biophysical properties of both native and recombinant TasA fibres indicate that they are not functional amyloid-like fibres. A gel formed by TasA fibres can recover after physical shear force, suggesting that the biofilm matrix is not static and that these properties may enable B. subtilis to remodel its local environment in response to external cues. Using recombinant fibres formed by TasA orthologues we uncover species variability in the ability of heterologous fibres to cross-complement the B. subtilis tasA deletion. These findings are indicative of specificity in the biophysical requirements of the TasA fibres across different species and/or reflect the precise molecular interactions needed for biofilm matrix assembly. Contributions Conceived and designed the experiments: CE, EE, RG, CEM, RJM, MS, NSW; Performed the experiments: KB, LC, CE, EE, PKF, RG, CEM, RJM, MS, TS; Contributed new analytical tools: CE, EE, RG, TS; Analysed the data: CE, EE, CEM, RJM, MS, LCS, NSW; Wrote the paper: EE, RJM, CEM, MS, NSW.


Philosophical Transactions of the Royal Society A | 2016

A phenomenological description of BslA assemblies across multiple length scales

Ryan J. Morris; Keith M. Bromley; Nicola R. Stanley-Wall; Cait E. MacPhee

Intrinsically interfacially active proteins have garnered considerable interest recently owing to their potential use in a range of materials applications. Notably, the fungal hydrophobins are known to form robust and well-organized surface layers with high mechanical strength. Recently, it was shown that the bacterial biofilm protein BslA also forms highly elastic surface layers at interfaces. Here we describe several self-assembled structures formed by BslA, both at interfaces and in bulk solution, over a range of length scales spanning from nanometres to millimetres. First, we observe transiently stable and highly elongated air bubbles formed in agitated BslA samples. We study their behaviour in a range of solution conditions and hypothesize that their dissipation is a consequence of the slow adsorption kinetics of BslA to an air–water interface. Second, we describe elongated tubules formed by BslA interfacial films when shear stresses are applied in both a Langmuir trough and a rheometer. These structures bear a striking resemblance, although much larger in scale, to the elongated air bubbles formed during agitation. Taken together, this knowledge will better inform the conditions and applications of how BslA can be used in the stabilization of multi-phase materials. This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’.


Biophysical Journal | 2016

The Conformation of Interfacially Adsorbed Ranaspumin-2 Is an Arrested State on the Unfolding Pathway.

Ryan J. Morris; Giovanni B. Brandani; Vibhuti Desai; Brian O. Smith; Marieke Schor; Cait E. MacPhee

Ranaspumin-2 (Rsn-2) is a surfactant protein found in the foam nests of the túngara frog. Previous experimental work has led to a proposed model of adsorption that involves an unusual clam-shell-like unhinging of the protein at an interface. Interestingly, there is no concomitant denaturation of the secondary structural elements of Rsn-2 with the large-scale transformation of its tertiary structure. In this work we use both experiment and simulation to better understand the driving forces underpinning this unusual process. We develop a modified Gō-model approach where we have included explicit representation of the side chains to realistically model the interaction between the secondary structure elements of the protein and the interface. Doing so allows for the study of the underlying energy landscape that governs the mechanism of Rsn-2 interfacial adsorption. Experimentally, we study targeted mutants of Rsn-2, using the Langmuir trough, pendant drop tensiometry, and circular dichroism, to demonstrate that the clam-shell model is correct. We find that Rsn-2 adsorption is in fact a two-step process: the hydrophobic N-terminal tail recruits the protein to the interface after which Rsn-2 undergoes an unfolding transition that maintains its secondary structure. Intriguingly, our simulations show that the conformation Rsn-2 adopts at an interface is an arrested state along the denaturation pathway. More generally, our computational model should prove a useful, and computationally efficient, tool in studying the dynamics and energetics of protein-interface interactions.


Biophysical Journal | 2015

A Kinetic Study of Ovalbumin Fibril Formation: The Importance of Fragmentation and End-Joining

Jason M. D. Kalapothakis; Ryan J. Morris; Juraj Szavits-Nossan; Kym Eden; Sam Covill; Sean Tabor; Jay Gillam; Perdita E. Barran; Rosalind J. Allen; Cait E. MacPhee

The ability to control the morphologies of biomolecular aggregates is a central objective in the study of self-assembly processes. The development of predictive models offers the surest route for gaining such control. Under the right conditions, proteins will self-assemble into fibers that may rearrange themselves even further to form diverse structures, including the formation of closed loops. In this study, chicken egg white ovalbumin is used as a model for the study of fibril loops. By monitoring the kinetics of self-assembly, we demonstrate that loop formation is a consequence of end-to-end association between protein fibrils. A model of fibril formation kinetics, including end-joining, is developed and solved, showing that end-joining has a distinct effect on the growth of fibrillar mass density (which can be measured experimentally), establishing a link between self-assembly kinetics and the underlying growth mechanism. These results will enable experimentalists to infer fibrillar morphologies from an appropriate analysis of self-assembly kinetic data.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Bifunctionality of a biofilm matrix protein controlled by redox state

Sofia Arnaouteli; Ana Sofia Ferreira; Marieke Schor; Ryan J. Morris; Keith M. Bromley; Jeanyoung Jo; Krista Lynn Cortez; Tetyana Sukhodub; Alan R. Prescott; Lars E. P. Dietrich; Cait E. MacPhee; Nicola R. Stanley-Wall

Significance The biofilm matrix is a critical target in the hunt for novel strategies to destabilize or stabilize biofilms. Knowledge of the processes controlling matrix assembly is therefore an essential prerequisite to exploitation. Here, we highlight that the complexity of the biofilm matrix is even higher than anticipated, with one matrix component making two independent functional contributions to the community. The influence the protein exerts is dependent on the local environmental properties, providing another dimension to consider during analysis. These findings add to the evidence that bacteria can evolve multifunctional uses for the extracellular matrix components. Biofilms are communities of microbial cells that are encapsulated within a self-produced polymeric matrix. The matrix is critical to the success of biofilms in diverse habitats; however, many details of the composition, structure, and function remain enigmatic. Biofilms formed by the Gram-positive bacterium Bacillus subtilis depend on the production of the secreted film-forming protein BslA. Here, we show that a gradient of electron acceptor availability through the depth of the biofilm gives rise to two distinct functional roles for BslA and that these roles can be genetically separated through targeted amino acid substitutions. We establish that monomeric BslA is necessary and sufficient to give rise to complex biofilm architecture, whereas dimerization of BslA is required to render the community hydrophobic. Dimerization of BslA, mediated by disulfide bond formation, depends on two conserved cysteine residues located in the C-terminal region. Our findings demonstrate that bacteria have evolved multiple uses for limited elements in the matrix, allowing for alternative responses in a complex, changing environment.


Molecular Microbiology | 2018

Formation of functional, non-amyloidogenic fibres by recombinant Bacillus subtilis TasA: Functional recombinant non-amyloidogenic TasA fibres

Elliot Erskine; Ryan J. Morris; Marieke Schor; Chris Earl; Rachel M. C. Gillespie; Keith M. Bromley; Tetyana Sukhodub; Lauren Clark; Paul K. Fyfe; Louise C. Serpell; Nicola R. Stanley-Wall; Cait E. MacPhee

Bacterial biofilms are communities of microbial cells encased within a self‐produced polymeric matrix. In the Bacillus subtilis biofilm matrix, the extracellular fibres of TasA are essential. Here, a recombinant expression system allows interrogation of TasA, revealing that monomeric and fibre forms of TasA have identical secondary structure, suggesting that fibrous TasA is a linear assembly of globular units. Recombinant TasA fibres form spontaneously, and share the biological activity of TasA fibres extracted from B. subtilis, whereas a TasA variant restricted to a monomeric form is inactive and subjected to extracellular proteolysis. The biophysical properties of both native and recombinant TasA fibres indicate that they are not functional amyloid‐like fibres. A gel formed by TasA fibres can recover after physical shear force, suggesting that the biofilm matrix is not static and that these properties may enable B. subtilis to remodel its local environment in response to external cues. Using recombinant fibres formed by TasA orthologues we uncover species variability in the ability of heterologous fibres to cross‐complement the B. subtilis tasA deletion. These findings are indicative of specificity in the biophysical requirements of the TasA fibres across different species and/or reflect the precise molecular interactions needed for biofilm matrix assembly.


Scientific Reports | 2017

Natural variations in the biofilm-associated protein BslA from the genus Bacillus

Ryan J. Morris; Marieke Schor; Rachel M. C. Gillespie; Ana Sofia Ferreira; Lucia Baldauf; Chris Earl; Adam Ostrowski; Laura Hobley; Keith M. Bromley; Tetyana Sukhodub; Sofia Arnaouteli; Nicola R. Stanley-Wall; Cait E. MacPhee

BslA is a protein secreted by Bacillus subtilis which forms a hydrophobic film that coats the biofilm surface and renders it water-repellent. We have characterised three orthologues of BslA from Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus as well as a paralogue from B. subtilis called YweA. We find that the three orthologous proteins can substitute for BslA in B. subtilis and confer a degree of protection, whereas YweA cannot. The degree to which the proteins functionally substitute for native BslA correlates with their in vitro biophysical properties. Our results demonstrate the use of naturally-evolved variants to provide a framework for teasing out the molecular basis of interfacial self-assembly.


bioRxiv | 2016

Evolutionary variations in the biofilm-associated protein BslA from the genus Bacillus

Ryan J. Morris; Marieke Schor; Rachel M. C. Gillespie; Ana Sofia Ferreira; Keith M. Bromley; Lucia Baldauf; Sofia Arnaouteli; Tetyana Sukhodub; Adam Ostrowski; Laura Hobley; Chris Earl; Nicola R. Stanley-Wall; Cait E. MacPhee

BslA is a protein secreted by Bacillus subtilis which forms a hydrophobic film that coats the biofilm surface and renders it water-repellent. We have characterised three orthologues of BslA from Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus as well as a paralogue from B. subtilis called YweA. We find that the three orthologous proteins can substitute for BslA in B. subtilis and confer a degree of protection, whereas YweA cannot. The degree to which the proteins functionally substitute for native BslA correlates with their in vitro biophysical properties. Our results demonstrate the use of naturally-evolved variants to provide a framework for teasing out the molecular basis of interfacial self-assembly.

Collaboration


Dive into the Ryan J. Morris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kym Eden

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Hobley

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge