Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan K. Shields is active.

Publication


Featured researches published by Ryan K. Shields.


Clinical Infectious Diseases | 2012

Performance of Candida Real-time Polymerase Chain Reaction, β-D-Glucan Assay, and Blood Cultures in the Diagnosis of Invasive Candidiasis

M. Hong Nguyen; Mark C. Wissel; Ryan K. Shields; Martin Salomoni; Binghua Hao; Ellen G. Press; Ryan M. Shields; Shaoji Cheng; Dimitra Mitsani; Aniket Vadnerkar; Fernanda P. Silveira; Steven B. Kleiboeker; Cornelius J. Clancy

BACKGROUND The sensitivity of blood cultures for diagnosing invasive candidiasis (IC) is poor. METHODS We performed a validated Candida real-time polymerase chain reaction (PCR) and the Fungitell 1,3-β-D-glucan (BDG) assay on blood samples collected from prospectively identified patients with IC (n = 55) and hospitalized controls (n = 73). Patients with IC had candidemia (n = 17), deep-seated candidiasis (n = 33), or both (n = 5). Controls had mucosal candidiasis (n = 5), Candida colonization (n = 48), or no known Candida colonization (n = 20). RESULTS PCR using plasma or sera was more sensitive than whole blood for diagnosing IC (P = .008). Plasma or sera PCR was more sensitive than BDG in diagnosing IC (80% vs 56%; P = .03), with comparable specificity (70% vs 73%; P = .31). The tests were similar in diagnosing candidemia (59% vs 68%; P = .77), but PCR was more sensitive for deep-seated candidiasis (89% vs 53%; P = .004). PCR and BDG were more sensitive than blood cultures among patients with deep-seated candidiasis (88% and 62% vs 17%; P = .0005 and .003, respectively). PCR and culture identified the same Candida species in 82% of patients. The sensitivity of blood cultures combined with PCR or BDG among patients with IC was 98% and 79%, respectively. CONCLUSIONS Candida PCR and, to a lesser extent, BDG testing significantly enhanced the ability of blood cultures to diagnose IC.


Antimicrobial Agents and Chemotherapy | 2012

The Presence of an FKS Mutation Rather than MIC Is an Independent Risk Factor for Failure of Echinocandin Therapy among Patients with Invasive Candidiasis Due to Candida glabrata

Ryan K. Shields; M. Hong Nguyen; Ellen G. Press; Andrea L. Kwa; Shaoji Cheng; Chen Du; Cornelius J. Clancy

ABSTRACT Echinocandins are frontline agents against invasive candidiasis (IC), but predictors for echinocandin therapeutic failure have not been well defined. Mutations in Candida FKS genes, which encode the enzyme targeted by echinocandins, result in elevated MICs and have been linked to therapeutic failures. In this study, echinocandin MICs by broth microdilution and FKS1 and FKS2 mutations among C. glabrata isolates recovered from patients with IC at our center were correlated retrospectively with echinocandin therapeutic responses. Thirty-five patients with candidemia and 4 with intra-abdominal abscesses were included, 92% (36/39) of whom received caspofungin. Twenty-six percent (10) and 74% (29) failed and responded to echinocandin therapy, respectively. Caspofungin, anidulafungin, and micafungin MICs ranged from 0.5 to 8, 0.03 to 1, and 0.015 to 0.5 μg/ml, respectively. FKS mutations were detected in 18% (7/39) of C. glabrata isolates (FKS1, n = 2; FKS2, n = 5). Median caspofungin and anidulafungin MICs were higher for patients who failed therapy (P = 0.04 and 0.006, respectively). By receiver operating characteristic (ROC) analyses, MIC cutoffs that best predicted failure were >0.5 (caspofungin), >0.06 (anidulafungin), and >0.03 μg/ml (micafungin), for which sensitivity/specificity were 60%/86%, 50%/97%, and 40%/90%, respectively. Sensitivity/specificity of an FKS mutation in predicting failure were 60%/97%. By univariate analysis, recent gastrointestinal surgery, prior echinocandin exposure, anidulafungin MIC of >0.06 μg/ml, caspofungin MIC of >0.5 μg/ml, and an FKS mutation were significantly associated with failure. The presence of an FKS mutation was the only independent risk factor by multivariate analysis (P = 0.002). In conclusion, detection of C. glabrata FKS mutations was superior to MICs in predicting echinocandin therapeutic responses among patients with IC.


Clinical Infectious Diseases | 2011

Comparison of an Aspergillus Real-time Polymerase Chain Reaction Assay With Galactomannan Testing of Bronchoalvelolar Lavage Fluid for the Diagnosis of Invasive Pulmonary Aspergillosis in Lung Transplant Recipients

Me Linh Luong; Cornelius J. Clancy; Aniket Vadnerkar; Eun J. Kwak; Fernanda P. Silveira; Mark C. Wissel; Kevin J. Grantham; Ryan K. Shields; M. Crespo; Joseph M. Pilewski; Yoshiya Toyoda; Steven B. Kleiboeker; Diana L. Pakstis; S. Reddy; Thomas J. Walsh; M. Hong Nguyen

BACKGROUND Early diagnosis and treatment of invasive pulmonary aspergillosis (IPA) improves outcome. METHODS We compared the performance of publicly available pan-Aspergillus, Aspergillus fumigatus-, and Aspergillus terreus-specific real-time polymerase chain reaction (PCR) assays with the Platelia galactomannan (GM) assay in 150 bronchoalveolar lavage (BAL) samples from lung transplant recipients (16 proven/probable IPA, 26 Aspergillus colonization, 11 non-Aspergillus mold colonization, and 97 negative controls). RESULTS The sensitivity and specificity of pan-Aspergillus PCR (optimal quantification cycle [Cq], ≤35.0 by receiver operating characteristic analysis) and GM (≥.5) for diagnosing IPA were 100% (95% confidence interval, 79%-100%) and 88% (79%-92%), and 93% (68%-100%) and 89% (82%-93%), respectively. The sensitivity and specificity of A. fumigatus-specific PCR were 85% (55%-89%) and 96% (91%-98%), respectively. A. terreus-specific PCR was positive for the 1 patient with IPA due to this species; specificity was 99% (148 of 149 samples). Aspergillus PCR identified 1 patient with IPA not diagnosed by GM. For BAL samples associated with Aspergillus colonization, the specificity of GM (92%) was higher than that of pan-Aspergillus PCR (50%; P = .003). Among negative control samples, the specificity of pan-Aspergillus PCR (97%) was higher than that of BAL GM (88%; P = .03). Positive results for both BAL PCR and GM testing improved the specificity to 97% with minimal detriment to sensitivity (93%). CONCLUSIONS A recently developed pan-Aspergillus PCR assay and GM testing of BAL fluid may facilitate the diagnosis of IPA after lung transplantation. A. fumigatus- and A. terreus-specific real-time PCR assays may be useful in rapidly identifying the most common cause of IPA and a species that is intrinsically resistant to amphotericin B, respectively.


Clinical Infectious Diseases | 2015

Colistin-Resistant Acinetobacter baumannii: Beyond Carbapenem Resistance

Zubair A. Qureshi; Lauren E. Hittle; Jessica A. O'Hara; Jesabel I. Rivera; Alveena Syed; Ryan K. Shields; Anthony W. Pasculle; Robert K. Ernst; Yohei Doi

BACKGROUND With an increase in the use of colistin methansulfonate (CMS) to treat carbapenem-resistant Acinetobacter baumannii infections, colistin resistance is emerging. METHODS Patients with infection or colonization due to colistin-resistant A. baumannii were identified at a hospital system in Pennsylvania. Clinical data were collected from electronic medical records. Susceptibility testing, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST) were performed. To investigate the mechanism of colistin resistance, lipid A was subjected to matrix-assisted laser desorption/ionization mass spectrometry. RESULTS Twenty patients with colistin-resistant A. baumannii were identified. Ventilator-associated pneumonia was the most common type of infection. Nineteen patients had received intravenous and/or inhaled CMS for treatment of carbapenem-resistant, colistin-susceptible A. baumannii infection prior to identification of colistin-resistant isolates. The 30-day all-cause mortality rate was 30%. The treatment regimen for colistin-resistant A. baumannii infection associated with the lowest mortality rate was a combination of CMS, a carbapenem, and ampicillin-sulbactam. The colistin-susceptible and -resistant isolates from the same patients were highly related by PFGE, but isolates from different patients were not, suggesting evolution of resistance during CMS therapy. By MLST, all isolates belonged to the international clone II, the lineage that is epidemic worldwide. Phosphoethanolamine modification of lipid A was present in all colistin-resistant A. baumannii isolates. CONCLUSIONS Colistin-resistant A. baumannii occurred almost exclusively among patients who had received CMS for treatment of carbapenem-resistant, colistin-susceptible A. baumannii infection. Lipid A modification by the addition of phosphoethanolamine accounted for colistin resistance. Susceptibility testing for colistin should be considered for A. baumannii identified from CMS-experienced patients.


Antimicrobial Agents and Chemotherapy | 2012

Prospective, Observational Study of Voriconazole Therapeutic Drug Monitoring among Lung Transplant Recipients Receiving Prophylaxis: Factors Impacting Levels of and Associations between Serum Troughs, Efficacy, and Toxicity

Dimitra Mitsani; M. Hong Nguyen; Ryan K. Shields; Yoshiya Toyoda; Eun J. Kwak; Fernanda P. Silveira; Joseph M. Pilewski; M. Crespo; C. Bermudez; J.K. Bhama; Cornelius J. Clancy

ABSTRACT Voriconazole prophylaxis is common following lung transplantation, but the value of therapeutic drug monitoring is unknown. A prospective, observational study of lung transplant recipients (n = 93) receiving voriconazole prophylaxis was performed. Serum voriconazole troughs (n = 331) were measured by high-pressure liquid chromatography. The median initial and subsequent troughs were 1.91 and 1.46 μg/ml, respectively. The age of the patient directly correlated with initial troughs (P = 0.005). Patients that were ≥60 years old and cystic fibrosis patients were significantly more likely to have higher and lower initial troughs, respectively. In 95% (88/93) of patients, ≥2 troughs were measured. In 28% (25/88) and 32% (28/88) of these patients, all troughs were ≤1.5 μg/ml or >1.5 μg/ml, respectively. Ten percent (10/93) and 27% (25/93) of the patients developed invasive fungal infection (tracheobronchitis) and fungal colonization, respectively. The median troughs at the times of positive and negative fungal cultures were 0.92 and 1.72 μg/ml (P = 0.07). Invasive fungal infections or colonization were more likely with troughs of ≤1.5 μg/ml (P = 0.01) and among patients with no trough of >1.5 μg/ml (P = 0.007). Other cutoff troughs correlated less strongly with microbiologic outcomes. Troughs correlated directly with aspartate transferase levels (P = 0.003), but not with other liver enzymes. Voriconazole was discontinued due to suspected toxicity in 27% (25/93) of the patients. The troughs did not differ at the times of suspected drug-induced hepatotoxicity, central nervous system (CNS) toxicity, or nausea/vomiting and in the absence of toxicity. Voriconazole prophylaxis was most effective at troughs of >1.5 μg/ml. A cutoff for toxicity was not identified, but troughs of >4 μg/ml were rare. The data support a target range of >1.5 to 4 μg/ml.


PLOS ONE | 2012

Epidemiology, Clinical Characteristics and Outcomes of Extensively Drug-Resistant Acinetobacter baumannii Infections among Solid Organ Transplant Recipients

Ryan K. Shields; Cornelius J. Clancy; Louise M. Gillis; Eun J. Kwak; Fernanda P. Silveira; Rima C. Abdel Massih; Gregory A. Eschenauer; Brian A. Potoski; M. Hong Nguyen

Background Extensively drug-resistant Acinetobacter baumannii (XDR-Ab) has emerged as a major nosocomial pathogen, but optimal treatment regimens are unknown. Although solid organ transplant (SOT) recipients are particularly susceptible to XDR-Ab infections, studies in this population are limited. Our objectives were to determine the epidemiology, clinical characteristics and outcomes of XDR-Ab infections among SOT patients. Methods A retrospective study of SOT recipients at our center who were colonized or infected with XDR-Ab between November 2006 and December 2011 was conducted. Among infected patients, the primary outcome was survival at 28 days. Secondary outcomes included survival at 90 days and clinical success at 28 days, and XDR-Ab infection recurrence. Results XDR-Ab was isolated from 69 SOT patients, of whom 41% (28) and 59% (41) were colonized and infected, respectively. Infections were significantly more common among cardiothoracic than abdominal transplant recipients (p = 0.0004). Ninety-eight percent (40/41) of patients had respiratory tract infections, most commonly ventilator-associated pneumonia (VAP; 88% [36/41]). Survival rates at 28 and 90 days were 54% (22/41) and 46% (19/41), respectively. Treatment with a colistin-carbapenem regimen was an independent predictor of 28-day survival (p = 0.01; odds ratio = 7.88 [95% CI: 1.60–38.76]). Clinical success at 28 days was achieved in 49% (18/37) of patients who received antimicrobial therapy, but 44% (8/18) of successes were associated with infection recurrence within 3 months. Colistin resistance emerged in 18% (2/11) and 100% (3/3) of patients treated with colistin-carbapenem and colistin-tigecycline, respectively (p = 0.03). Conclusions XDR-Ab causes VAP and other respiratory infections following SOT that are associated with significant recurrence and mortality rates. Cardiothoracic transplant recipients are at greatest risk. Results from this retrospective study suggest that colistin-carbapenem combinations may result in improved clinical responses and survival compared to other regimens and may also limit the emergence of colistin resistance.


Antimicrobial Agents and Chemotherapy | 2017

Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne blaKPC-3 Mutations during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections

Ryan K. Shields; Liang Chen; Shaoji Cheng; Kalyan D. Chavda; Ellen G. Press; Avin C. Snyder; Ruchi Pandey; Yohei Doi; Barry N. Kreiswirth; M. Hong Nguyen; Cornelius J. Clancy

ABSTRACT Ceftazidime-avibactam is a novel β-lactam/β-lactamase inhibitor with activity against carbapenem-resistant Enterobacteriaceae (CRE) that produce Klebsiella pneumoniae carbapenemase (KPC). We report the first cases of ceftazidime-avibactam resistance to develop during treatment of CRE infections and identify resistance mechanisms. Ceftazidime-avibactam-resistant K. pneumoniae emerged in three patients after ceftazidime-avibactam treatment for 10 to 19 days. Whole-genome sequencing (WGS) of longitudinal ceftazidime-avibactam-susceptible and -resistant K. pneumoniae isolates was used to identify potential resistance mechanisms. WGS identified mutations in plasmid-borne blaKPC-3, which were not present in baseline isolates. blaKPC-3 mutations emerged independently in isolates of a novel sequence type 258 sublineage and resulted in variant KPC-3 enzymes. The mutations were validated as resistance determinants by measuring MICs of ceftazidime-avibactam and other agents following targeted gene disruption in K. pneumoniae, plasmid transfer, and blaKPC cloning into competent Escherichia coli. In rank order, the impact of KPC-3 variants on ceftazidime-avibactam MICs was as follows: D179Y/T243M double substitution > D179Y > V240G. Remarkably, mutations reduced meropenem MICs ≥4-fold from baseline, restoring susceptibility in K. pneumoniae from two patients. Cefepime and ceftriaxone MICs were also reduced ≥4-fold against D179Y/T243M and D179Y variant isolates, but susceptibility was not restored. Reverse transcription-PCR revealed that expression of blaKPC-3 encoding D179Y/T243M and D179Y variants was diminished compared to blaKPC-3 expression in baseline isolates. In conclusion, the development of resistance-conferring blaKPC-3 mutations in K. pneumoniae within 10 to 19 days of ceftazidime-avibactam exposure is troubling, but clinical impact may be ameliorated if carbapenem susceptibility is restored in certain isolates.


Antimicrobial Agents and Chemotherapy | 2012

The Combination of Doripenem and Colistin Is Bactericidal and Synergistic against Colistin-Resistant, Carbapenemase-Producing Klebsiella pneumoniae

Meredith G. Jernigan; Ellen G. Press; M. Hong Nguyen; Cornelius J. Clancy; Ryan K. Shields

ABSTRACT We tested two-drug combinations of doripenem, colistin, gentamicin, and doxycycline against 12 carbapenemase-producing Klebsiella pneumoniae (KPC) isolates by time-kill. The combination of doripenem and colistin reduced the starting inocula by 2 logs for each isolate (range, 2.02 to 6.01 log10) and was bactericidal and synergistic against 75 and 50%, respectively. Among colistin- and pan-drug-resistant isolates, synergy was identified in 60 and 67%, respectively. All other combinations were inferior. We are currently evaluating the combination of doripenem and colistin as a frontline therapy for KPC infection.


Antimicrobial Agents and Chemotherapy | 2014

Carbapenem-Resistant Klebsiella pneumoniae Strains Exhibit Diversity in Aminoglycoside-Modifying Enzymes, Which Exert Differing Effects on Plazomicin and Other Agents

Reem Almaghrabi; Cornelius J. Clancy; Yohei Doi; Binghua Hao; Liang Chen; Ryan K. Shields; Ellen G. Press; Nicole M. Iovine; Bethany M. Townsend; Marilyn M. Wagener; Barry N. Kreiswirth; M. Hong Nguyen

ABSTRACT We measured in vitro activity of plazomicin, a next-generation aminoglycoside, and other aminoglycosides against 50 carbapenem-resistant Klebsiella pneumoniae strains from two centers and correlated the results with the presence of various aminoglycoside-modifying enzymes (AMEs). Ninety-four percent of strains were sequence type 258 (ST258) clones, which exhibited 5 ompK36 genotypes; 80% and 10% of strains produced Klebsiella pneumoniae carbapenemase 2 (KPC-2) and KPC-3, respectively. Ninety-eight percent of strains possessed AMEs, including AAC(6′)-Ib (98%), APH(3′)-Ia (56%), AAC(3)-IV (38%), and ANT(2″)-Ia (2%). Gentamicin, tobramycin, and amikacin nonsusceptibility rates were 40, 98, and 16%, respectively. Plazomicin MICs ranged from 0.25 to 1 μg/ml. Tobramycin and plazomicin MICs correlated with gentamicin MICs (r = 0.75 and 0.57, respectively). Plazomicin exerted bactericidal activity against 17% (1× MIC) and 94% (4× MIC) of strains. All strains with AAC(6′)-Ib were tobramycin-resistant; 16% were nonsusceptible to amikacin. AAC(6′)-Ib combined with another AME was associated with higher gentamicin, tobramycin, and plazomicin MICs than AAC(6′)-Ib alone (P = 0.01, 0.0008, and 0.046, respectively). The presence of AAC(3)-IV in a strain was also associated with higher gentamicin, tobramycin, and plazomicin MICs (P = 0.0006, P < 0.0001, and P = 0.01, respectively). The combination of AAC(6′)-Ib and another AME, the presence of AAC(3)-IV, and the presence of APH(3′)-Ia were each associated with gentamicin resistance (P = 0.0002, 0.003, and 0.01, respectively). In conclusion, carbapenem-resistant K. pneumoniae strains (including ST258 clones) exhibit highly diverse antimicrobial resistance genotypes and phenotypes. Plazomicin may offer a treatment option against strains resistant to other aminoglycosides. The development of molecular assays that predict antimicrobial responses among carbapenem-resistant K. pneumoniae strains should be a research priority.


American Journal of Transplantation | 2013

Epidemiology and Molecular Characterization of Bacteremia Due to Carbapenem-Resistant Klebsiella pneumoniae in Transplant Recipients

Cornelius J. Clancy; L. Chen; Ryan K. Shields; Y. Zhao; S. Cheng; K. D. Chavda; B. Hao; J. H. Hong; Yohei Doi; Eun J. Kwak; Fernanda P. Silveira; R. Abdel-Massih; Tatiana Bogdanovich; Abhinav Humar; D. S. Perlin; B. N. Kreiswirth; M. Hong Nguyen

We conducted a retrospective study of 17 transplant recipients with carbapenem‐resistant Klebsiella pneumoniae bacteremia, and described epidemiology, clinical characteristics and strain genotypes. Eighty‐eight percent (15/17) of patients were liver or intestinal transplant recipients. Outcomes were death due to septic shock (18%), cure (24%) and persistent (>7 days) or recurrent bacteremia (29% each). Thirty‐ and 90‐day mortality was 18% and 47%, respectively. Patients who were cured received at least one active antimicrobial agent and underwent source control interventions. Forty‐one percent (7/17) of patients had intra‐abdominal infections; all except one developed persistent/recurrent bacteremia despite drainage. Two patients tolerated persistent bacteremia for >300 days. All patients except one were infected with sequence type 258 (ST258), K. pneumoniae carbapenemase (KPC)‐2‐producing strains harboring a mutant ompK35 porin gene; the exception was infected with an ST37, KPC‐3‐producing strain. Seventy‐one percent (12/17) of patients were infected with ST258 ompK36 mutant strains. In two patients, persistent bacteremia was caused by two strains with different ompK36 genotypes. Three ompK36 mutations were associated with significantly higher carbapenem minimum inhibitory concentrations than wild‐type ompK36. Pulse‐field gel electrophoresis identified a single ST258 lineage; serial strains from individual patients were indistinguishable. In conclusion, KPC‐K. pneumoniae bacteremia exhibited highly diverse clinical courses following transplantation, and was caused by clonal ST258 strains with different ompK36 genotypes.

Collaboration


Dive into the Ryan K. Shields's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Hong Nguyen

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Ellen G. Press

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eun J. Kwak

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Crespo

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge