Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan Kulka is active.

Publication


Featured researches published by Ryan Kulka.


Environmental Health Perspectives | 2011

Traffic-Related Air Pollution and Acute Changes in Heart Rate Variability and Respiratory Function in Urban Cyclists

Scott Weichenthal; Ryan Kulka; Aimee Dubeau; Christina Martin; Daniel Wang; Robert E. Dales

Background: Few studies have examined the acute health effects of air pollution exposures experienced while cycling in traffic. Objectives: We conducted a crossover study to examine the relationship between traffic pollution and acute changes in heart rate variability. We also collected spirometry and exhaled nitric oxide measures. Methods: Forty-two healthy adults cycled for 1 hr on high- and low-traffic routes as well as indoors. Health measures were collected before cycling and 1–4 hr after the start of cycling. Ultrafine particles (UFPs; ≤ 0.1 μm in aerodynamic diameter), particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5), black carbon, and volatile organic compounds were measured along each cycling route, and ambient nitrogen dioxide (NO2) and ozone (O3) levels were recorded from a fixed-site monitor. Mixed-effects models were used to estimate associations between air pollutants and changes in health outcome measures relative to precycling baseline values. Results: An interquartile range increase in UFP levels (18,200/cm3) was associated with a significant decrease in high-frequency power 4 hr after the start of cycling [β = –224 msec2; 95% confidence interval (CI), –386 to –63 msec2]. Ambient NO2 levels were inversely associated with the standard deviation of normal-to-normal (NN) intervals (β = –10 msec; 95% CI, –20 to –0.34 msec) and positively associated with the ratio of low-frequency to high-frequency power (β = 1.4; 95% CI, 0.35 to 2.5) 2 hr after the start of cycling. We also observed significant inverse associations between ambient O3 levels and the root mean square of successive differences in adjacent NN intervals 3 hr after the start of cycling. Conclusions: Short-term exposures to traffic pollution may contribute to altered autonomic modulation of the heart in the hours immediately after cycling.


Journal of Exposure Science and Environmental Epidemiology | 2011

Validation of continuous particle monitors for personal, indoor, and outdoor exposures

Lance Wallace; Amanda J. Wheeler; Jill Kearney; Keith Van Ryswyk; Hongyu You; Ryan Kulka; Pat E. Rasmussen; Jeffrey R. Brook; Xiaohong Xu

Continuous monitors can be used to supplement traditional filter-based methods of determining personal exposure to air pollutants. They have the advantages of being able to identify nearby sources and detect temporal changes on a time scale of a few minutes. The Windsor Ontario Exposure Assessment Study (WOEAS) adopted an approach of using multiple continuous monitors to measure indoor, outdoor (near-residential) and personal exposures to PM2.5, ultrafine particles and black carbon. About 48 adults and households were sampled for five consecutive 24-h periods in summer and winter 2005, and another 48 asthmatic children for five consecutive 24-h periods in summer and winter 2006. This article addresses the laboratory and field validation of these continuous monitors. A companion article (Wheeler et al., 2010) provides similar analyses for the 24-h integrated methods, as well as providing an overview of the objectives and study design. The four continuous monitors were the DustTrak (Model 8520, TSI, St. Paul, MN, USA) and personal DataRAM (pDR) (ThermoScientific, Waltham, MA, USA) for PM2.5; the P-Trak (Model 8525, TSI) for ultrafine particles; and the Aethalometer (AE-42, Magee Scientific, Berkeley, CA, USA) for black carbon (BC). All monitors were tested in multiple co-location studies involving as many as 16 monitors of a given type to determine their limits of detection as well as bias and precision. The effect of concentration and electronic drift on bias and precision were determined from both the collocated studies and the full field study. The effect of rapid changes in environmental conditions on switching an instrument from indoor to outdoor sampling was also studied. The use of multiple instruments for outdoor sampling was valuable in identifying occasional poor performance by one instrument and in better determining local contributions to the spatial variation of particulate pollution. Both the DustTrak and pDR were shown to be in reasonable agreement (R2 of 90 and 70%, respectively) with the gravimetric PM2.5 method. Both instruments had limits of detection of about 5 μg/m3. The DustTrak and pDR had multiplicative biases of about 2.5 and 1.6, respectively, compared with the gravimetric samplers. However, their average bias-corrected precisions were <10%, indicating that a proper correction for bias would bring them into very good agreement with standard methods. Although no standard methods exist to establish the bias of the Aethalometer and P-Trak, the precision was within 20% for the Aethalometer and within 10% for the P-Trak. These findings suggest that all four instruments can supply useful information in environmental studies.


Aerosol Science and Technology | 2011

Personal, Indoor, and Outdoor Concentrations of Fine and Ultrafine Particles Using Continuous Monitors in Multiple Residences

Amanda J. Wheeler; Lance Wallace; Jill Kearney; Keith Van Ryswyk; Hongyu You; Ryan Kulka; Jeffrey R. Brook; Xiaohong Xu

Concentrations of airborne continuous fine particulate matter or (PM2.5), black carbon (BC), and ultrafine particles (UFP) were continuously measured over 5 days in winter and summer both indoors and outdoors at residences for forty-eight adults in 2005 and forty-seven asthmatic children in 2006. During 2006, personal concentrations of PM2.5 were also measured continuously. All 4 continuous instruments employed performed well both in laboratory and field conditions. Mean outdoor concentrations of PM2.5, BC, and UFP were significantly higher than either indoor or personal concentrations. Air exchange rates were low (median value only 0.2/h), there was widespread use of central forced air and high-quality furnace filters. Outdoor concentrations of all particle-related pollutants showed overnight decreases followed by increases during the morning rush hours. Afternoon concentrations increased for UFP and decreased for BC, with PM2.5 staying about the same. Between 5:00 pm and 7:00 pm, indoor UFP and PM2.5 concentrations exceeded their mean daily values by 160% and 60%, respectively, suggesting that cooking is an extremely important source for these two pollutants. However, BC values did not increase at these hours. The highest indoor–outdoor ratios were observed for UFP suggesting that indoor sources were relatively more important for UFP than for other particle components. BC measurements in Windsor agreed moderately well (R2 = 41%) with an independent measure of elemental carbon (EC) in Detroit. This large residential air pollution study has provided data making it possible to identify short-term variations and possible sources that can influence the relationships between pollutants and environments.


Journal of Exposure Science and Environmental Epidemiology | 2013

The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada

Marianne Hatzopoulou; Scott Weichenthal; Hussam Dugum; Graeme Pickett; Luis F. Miranda-Moreno; Ryan Kulka; Ross Andersen; Mark S. Goldberg

Cyclists may experience increased exposure to traffic-related air pollution owing to increased minute ventilation and close proximity to vehicle emissions. The aims of this study were to characterize personal exposures to air pollution among urban cyclists and to identify potential determinants of exposure including the type of cycling lane (separated vs on-road), traffic counts, and meteorological factors. In total, personal air pollution exposure data were collected over 64 cycling routes during morning and evening commutes in Montreal, Canada, over 32 days during the summer of 2011. Measured pollutants included ultrafine particles (UFPs), fine particles (PM2.5), black carbon (BC), and carbon monoxide (CO). Counts of diesel vehicles were important predictors of personal exposures to BC, with each 10 vehicle/h increase associated with a 15.0% (95% confidence interval (CI): 5.7%, 24.0%) increase in exposure. Use of separated cycling lanes had less impact on personal exposures with a 12% (95% CI: −43%, 14%) decrease observed for BC and smaller decreases observed for UFPs (mean: −1.3%, 95% CI: −20%, 17%) and CO (mean: −5.6%, 95% CI: −17%, 4%) after adjusting for meteorological factors and traffic counts. On average, PM2.5 exposure increased 7.8% (95% CI: −17%, 35%) with separate cycling lane use, but this estimate was imprecise and not statistically significant. In general, our findings suggest that diesel vehicle traffic is an important contributor to personal BC exposures and that separate cycling lanes may have a modest impact on personal exposure to some air pollutants. Further evaluation is required, however, as the impact of separate cycling lanes and/or traffic counts on personal exposures may vary between regions.


Journal of The Air & Waste Management Association | 2011

Windsor, Ontario Exposure Assessment Study: Design and Methods Validation of Personal, Indoor, and Outdoor Air Pollution Monitoring

Amanda J. Wheeler; Xiaohong Xu; Ryan Kulka; Hongyu You; Lance Wallace; Gary Mallach; Keith Van Ryswyk; Morgan MacNeill; Jill Kearney; Pat E. Rasmussen; Ewa Dabek-Zlotorzynska; Daniel Wang; Raymond Poon; Ron Williams; Corinne Stocco; Angelos Anastassopoulos; J. David Miller; Robert E. Dales; Jeffrey R. Brook

ABSTRACT The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic childrens respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM ≤ 2.5 μm [PM2.5] and ≤ 10 μm [PM10] in aerodynamic diameter),elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used. IMPLICATIONS It is important to obtain data to identify any factors that can influence the relationships among personal, indoor, and outdoor concentrations for a range of air pollutants. Ensuring that the methods used are valid and comparable to reference methods used in typical air pollution, monitoring is crucial for data to be of use to regulators. These exposure data can then be used to develop risk management policies that reduce personal and indoor exposures to air pollutants.


Environmental Science & Technology | 2015

In-Vehicle Exposures to Particulate Air Pollution in Canadian Metropolitan Areas: The Urban Transportation Exposure Study

Scott Weichenthal; Keith Van Ryswyk; Ryan Kulka; Liu Sun; Lance Wallace; Lawrence Joseph

Commuters may be exposed to increased levels of traffic-related air pollution owing to close proximity to traffic-emissions. We collected in-vehicle and roof-top air pollution measurements over 238 commutes in Montreal, Toronto, and Vancouver, Canada between 2010 and 2013. Voice recordings were used to collect real-time information on traffic density and the presence of diesel vehicles and multivariable linear regression models were used to estimate the impact of these factors on in-vehicle pollutant concentrations (and indoor/outdoor ratios) along with parameters for road type, land use, and meteorology. In-vehicle PM2.5 and NO2 concentrations consistently exceeded regional outdoor levels and each unit increase in the rate of encountering diesel vehicles (count/min) was associated with substantial increases (>100%) in in-vehicle concentrations of ultrafine particles (UFPs), black carbon, and PM2.5 as well as strong increases (>15%) in indoor/outdoor ratios. A model based on meteorology and the length of highway roads within a 500 m buffer explained 53% of the variation in in-vehicle UFPs; however, models for PM2.5 (R(2) = 0.24) and black carbon (R(2) = 0.30) did not perform as well. Our findings suggest that vehicle commuters experience increased exposure to air pollutants and that traffic characteristics, land use, road types, and meteorology are important determinants of these exposures.


Indoor Air | 2013

A randomized double‐blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community

Scott Weichenthal; Gary Mallach; Ryan Kulka; A. Black; Amanda J. Wheeler; Hongyu You; Mélissa St-Jean; R. Kwiatkowski; D. Sharp

UNLABELLED Few studies have examined indoor air quality in First Nations communities and its impact on cardiorespiratory health. To address this need, we conducted a crossover study on a First Nations reserve in Manitoba, Canada, including 37 residents in 20 homes. Each home received an electrostatic air filter and a placebo filter for 1 week in random order, and lung function, blood pressure, and endothelial function measures were collected at the beginning and end of each week. Indoor air pollutants were monitored throughout the study period. Indoor PM2.5 decreased substantially during air filter weeks relative to placebo (mean difference: 37 μg/m(3) , 95% CI: 10, 64) but remained approximately five times greater than outdoor concentrations owing to a high prevalence of indoor smoking. On average, air filter use was associated with a 217-ml (95% CI: 23, 410) increase in forced expiratory volume in 1 s, a 7.9-mm Hg (95% CI: -17, 0.82) decrease in systolic blood pressure, and a 4.5-mm Hg (95% CI: -11, 2.4) decrease in diastolic blood pressure. Consistent inverse associations were also observed between indoor PM2.5 and lung function. In general, our findings suggest that reducing indoor PM2.5 may contribute to improved lung function in First Nations communities. PRACTICAL IMPLICATIONS Indoor air quality is known to contribute to adverse cardiorespiratory health, but few studies have examined indoor air quality in First Nations communities. Our findings suggest that indoor PM2.5 may contribute to reduced lung function and that portable air filters may help to alleviate these effects by effectively reducing indoor levels of particulate matter.


Environmental Research | 2012

Personal exposure to specific volatile organic compounds and acute changes in lung function and heart rate variability among urban cyclists.

Scott Weichenthal; Ryan Kulka; Patrick Bélisle; Lawrence Joseph; Aimee Dubeau; Christina Martin; Daniel Wang; Robert E. Dales

BACKGROUND Few studies have examined the acute cardiorespiratory effects of specific volatile organic compound (VOC) exposures from traffic pollution. METHODS A cross-over study was conducted among 42 healthy adults during summer 2010 in Ottawa, Canada. Participants cycled for 1-h along high and low-traffic routes and VOC exposures were determined along each route. Lung function, exhaled nitric oxide, and heart rate variability were monitored before cycling and 1-4h after the start of cycling. Bayesian hierarchical models were used to examine the relationship between 26 VOCs and acute changes in clinical outcomes adjusted for potential confounding factors. RESULTS Each inter-quartile range (IQR) increase in propane/butane exposure was associated with a 2.0 millisecond (ms) (95% CI: 0.65, 3.2) increase in SDNN (standard deviation of normal-to-normal intervals), a 24 ms(2) (95% CI: 6.6, 41) increase in HF (high frequency power), and a 65 ms(2) (95% CI: 11, 118) increase in LF (low frequency power) in the hours following cycling. IQR increases in ethane and isoprene were associated with a 5.8 ms (95% CI: -9.8, -1.7): decrease in SDNN and a 24 ms(2) (95% CI: -44, -7.9) decrease in HF, respectively. IQR increases in benzene exposure were associated with a 1.7 ppb (95% CI: 1.1, 2.3) increase in exhaled nitric oxide and each IQR increase in 3-methylhexane exposure was associated with a 102 mL (95% CI: -157, -47) decrease in forced expiratory volume in 1-s. CONCLUSIONS Exposure to traffic-related VOCs may contribute to acute changes in lung function, inflammation, or heart rate variability.


Journal of Exposure Science and Environmental Epidemiology | 2014

Impact of microenvironments and personal activities on personal PM2.5 exposures among asthmatic children

Keith Van Ryswyk; Amanda J. Wheeler; Lance Wallace; Jill Kearney; Hongyu You; Ryan Kulka; Xiaohong Xu

Personal activity patterns have often been suggested as a source of unexplained variability when comparing personal particulate matter (PM2.5) exposure to modeled data using central site or microenvironmental data. To characterize the effect of personal activity patterns on asthmatic children’s personal PM2.5 exposure, data from the Windsor, Ontario Exposure Assessment Study were analyzed. The children spent on an average 67.1±12.7% (winter) and 72.3±22.6% (summer) of their time indoors at home where they received 51.7±14.8% and 66.3±19.0% of their PM2.5 exposure, respectively. In winter, 17.7±5.9% of their time was spent at school where they received 38.6±11.7% of their PM2.5 exposure. In summer, they spent 10.3±11.8% ‘indoors away from home’, which represented 23.4±18.3% of their PM2.5 exposure. Personal activity codes adapted from those of the National Human Activity Pattern Survey and the Canadian Human Activity Pattern Survey were assigned to the children’s activities. Of the over 100 available activity codes, 19 activities collectively encompassed nearly 95% of their time. Generalized estimating equation (GEE) models found that, while indoors at home, relative to daytime periods when sedentary activities were conducted, several personal activities were associated with significantly elevated personal PM2.5 exposures. Indoor playing represented a mean increase in PM2.5 of 10.1 μg/m3 (95% CI 6.3–13.8) and 11.6 μg/m3 (95% CI 8.1–15.1) in winter and summer, respectively, as estimated by a personal nephelometer.


Epidemiology | 2017

Biomass Burning as a Source of Ambient Fine Particulate Air Pollution and Acute Myocardial Infarction.

Scott Weichenthal; Ryan Kulka; Eric Lavigne; David van Rijswijk; Michael Brauer; Paul J. Villeneuve; Dave Stieb; Lawrence Joseph; Rick Burnett

Background: Biomass burning is an important source of ambient fine particulate air pollution (PM2.5) in many regions of the world. Methods: We conducted a time-stratified case-crossover study of ambient PM2.5 and hospital admissions for myocardial infarction (MI) in three regions of British Columbia, Canada. Daily hospital admission data were collected between 2008 and 2015 and PM2.5 data were collected from fixed site monitors. We used conditional logistic regression models to estimate odds ratios (ORs) describing the association between PM2.5 and the risk of hospital admission for MI. We used stratified analyses to evaluate effect modification by biomass burning as a source of ambient PM2.5 using the ratio of levoglucosan/PM2.5 mass concentrations. Results: Each 5 µg/m3 increase in 3-day mean PM2.5 was associated with an increased risk of MI among elderly subjects (≥65 years; OR = 1.06, 95% CI: 1.03, 1.08); risk was not increased among younger subjects. Among the elderly, the strongest association occurred during colder periods (<6.44°C); when we stratified analyses by tertiles of monthly mean biomass contributions to PM2.5 during cold periods, ORs of 1.19 (95% CI: 1.04, 1.36), 1.08 (95% CI: 1.06, 1.09), and 1.04 (95% CI: 1.03, 1.06) were observed in the upper, middle, and lower tertiles (Ptrend = 0.003), respectively. Conclusion: Short-term changes in ambient PM2.5 were associated with an increased risk of MI among elderly subjects. During cold periods, increased biomass burning contributions to PM2.5 may modify its association with MI.

Collaboration


Dive into the Ryan Kulka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lance Wallace

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge