Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan P. Lively is active.

Publication


Featured researches published by Ryan P. Lively.


Journal of Physical Chemistry Letters | 2012

Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8

Chen Zhang; Ryan P. Lively; Ke Zhang; Justin R. Johnson; Oguz Karvan; William J. Koros

We studied molecular sieving properties of zeolitic imidazolate framework-8 (ZIF-8) by estimating the thermodynamically corrected diffusivities of probe molecules at 35 °C. From helium (2.6 Å) to iso-C4H10 (5.0 Å), the corrected diffusivity drops 14 orders of magnitude. Our results further suggest that the effective aperture size of ZIF-8 for molecular sieving is in the range of 4.0 to 4.2 Å, which is significantly larger than the XRD-derived value (3.4 Å) and between the well-known aperture size of zeolite 4A (3.8 Å) and 5A (4.3 Å). Interestingly, because of aperture flexibility, the studied C4 hydrocarbon molecules that are larger than this effective aperture size still adsorb in the micropores of ZIF-8 with kinetic selectivities for iso-C4H8/iso-C4H10 of 180 and n-C4H10/iso-C4H10 of 2.5 × 10(6). These unexpected molecular sieving properties open up new opportunities for ZIF materials for separations that cannot be economically achieved by traditional microporous adsorbents such as synthetic zeolites.


Chemsuschem | 2014

Zeolitic Imidazolate Frameworks: Next‐Generation Materials for Energy‐Efficient Gas Separations

Brian R. Pimentel; Aamena Parulkar; Er‐kang Zhou; Nicholas A. Brunelli; Ryan P. Lively

Industrial separation processes comprise approximately 10% of the global energy demand, driven largely by the utilization of thermal separation methods (e.g., distillation). Significant energy and cost savings can be realized using advanced separation techniques such as membranes and sorbents. One of the major barriers to acceptance of these techniques remains creating materials that are efficient and productive in the presence of aggressive industrial feeds. One promising class of emerging materials is zeolitic imidazolate frameworks (ZIFs), an important thermally and chemically stable subclass of metal organic frameworks (MOFs). The objectives of this paper are (i) to provide a current understanding of the synthetic methods that enable the immense tunability of ZIFs, (ii) to identify areas of success and areas for improvement when ZIFs are used as adsorbents, (iii) to identify areas of success and areas for improvement in ZIF membranes. A review is given of the state-of-the-art in ZIF synthesis procedures and novel ZIF formation pathways as well as their application in energy efficient separations.


Journal of Physical Chemistry Letters | 2015

Defects in Metal–Organic Frameworks: Challenge or Opportunity?

David S. Sholl; Ryan P. Lively

Metal-organic framework (MOF) materials are nanoporous materials whose crystalline character has made them attractive targets for synthesis of new materials and potential use in a diverse set of applications. The vast majority of studies of MOFs envision these materials as having ideal crystal structures. This Perspective gives an overview of the current understanding of defects in MOFs. Compared to related materials such as zeolites, the ability to detect and control defects in MOFs is nascent. Nevertheless, it is likely that defects will play a vital role in a number of contexts where MOFs are of widespread interest, so advancing our understanding of these structural features will be important in coming years. Potential origins of point defects, plane defects, and surface defects are discussed. The difficulty of defect detection in metal-organic frameworks is discussed and useful paths for future work are provided.


Langmuir | 2012

Adsorption of Water and Ethanol in MFI-Type Zeolites

Ke Zhang; Ryan P. Lively; James Noel; Michelle E. Dose; Benjamin A. McCool; Ronald R. Chance; William J. Koros

Water and ethanol vapor adsorption phenomena are investigated systematically on a series of MFI-type zeolites: silicalite-1 samples synthesized via both alkaline (OH(-)) and fluoride (F(-)) routes, and ZSM-5 samples with different Si/Al ratios as well as different charge-balancing cations. Full isotherms (0.05-0.95 activity) over the range 25-55 °C are presented, and the lowest total water uptake ever reported in the literature is shown for silicalite-1 made via a fluoride-mediated route wherein internal silanol defects are significantly reduced. At a water activity level of 0.95 (35 °C), the total water uptake by silicalite-1 (F(-)) was found to be 0.263 mmol/g, which was only 12.6%, 9.8%, and 3.3% of the capacity for silicalite-1 (OH(-)), H-ZSM-5 (Si/Al:140), and H-ZSM-5 (Si/Al:15), respectively, under the same conditions. While water adsorption shows distinct isotherms for different MFI-type zeolites due to the difference in the concentration, distribution, and types of hydrophilic sites, the ethanol adsorption isotherms present relatively comparable results because of the overall organophilic nature of the zeolite framework. Due to the dramatic differences in the sorption behavior with the different sorbate-sorbent pairs, different models are applied to correlate and analyze the sorption isotherms. An adsorption potential theory was used to fit the water adsorption isotherms on all MFI-type zeolite adsorbents studied. The Langmuir model and Sircars model are applied to describe ethanol adsorption on silicalite-1 and ZSM-5 samples, respectively. An ideal ethanol/water adsorption selectivity (α) was estimated for the fluoride-mediated silicalite-1. At 35 °C, α was estimated to be 36 for a 5 mol % ethanol solution in water increasing to 53 at an ethanol concentration of 1 mol %. The adsorption data demonstrate that silicalite-1 made via the fluoride-mediated route is a promising candidate for ethanol extraction from dilute ethanol-water solutions.


ACS Applied Materials & Interfaces | 2013

Aminosilane-Grafted Polymer/Silica Hollow Fiber Adsorbents for CO2 Capture from Flue Gas

Fateme Rezaei; Ryan P. Lively; Ying Labreche; Grace Chen; Yanfang Fan; William J. Koros; Christopher W. Jones

Amine/silica/polymer composite hollow fiber adsorbents are produced using a novel reactive post-spinning infusion technique, and the obtained fibers are shown to capture CO2 from simulated flue gas. The post-spinning infusion technique allows for functionalization of polymer/silica hollow fibers with different types of amines during the solvent exchange step after fiber spinning. The post-spinning infusion of 3-aminopropyltrimethoxysilane (APS) into mesoporous silica/cellulose acetate hollow fibers is demonstrated here, and the materials are compared with hollow fibers infused with poly(ethyleneimine) (PEI). This approach results in silica/polymer composite fibers with good amine distribution and accessibility, as well as adequate porosity retained within the fibers to facilitate rapid mass transfer and adsorption kinetics. The CO2 adsorption capacities for the APS-infused hollow fibers are shown to be comparable to those of amine powders with similar amine loadings. In contrast, fibers that are spun with presynthesized, amine-loaded mesoporous silica powders show negligible CO2 uptake and low amine loadings because of loss of amines from the silica materials during the fiber spinning process. Aminosilica powders are shown to be more hydrophilic than the corresponding amine containing composite hollow fibers, the bare polymer as well as silica support. Both the PEI-infused and APS-infused fibers demonstrate reduced CO2 adsorption upon elevating the temperature from 35 to 80 °C, in accordance with thermodynamics, whereas PEI-infused powders show increased CO2 uptake over that temperature range because of competing diffusional and thermodynamic effects. The CO2 adsorption kinetics as probed via TGA show that the APS-infused hollow fiber adsorbents have more rapid uptake kinetics than their aminosilica powder analogues. The adsorption performance of the functionalized hollow fibers is also assessed in CO2 breakthrough experiments. The breakthrough results show a sharp CO2 front for APS-grafted fibers, indicating fast kinetics with comparable pseudo-equilibrium capacities to the CO2 equilibrium capacities measured via thermogravimetric analysis (TGA). The results indicate the post-spinning infusion method provides a new platform for synthesizing composite polymer/silica/amine fibers that may facilitate the ultimate scale-up of practical fiber adsorbents for flue gas CO2 capture applications.


Journal of the American Chemical Society | 2015

Highly Tunable Molecular Sieving and Adsorption Properties of Mixed-Linker Zeolitic Imidazolate Frameworks

Kiwon Eum; Krishna C. Jayachandrababu; Fereshteh Rashidi; Ke Zhang; Johannes Leisen; Samuel Graham; Ryan P. Lively; Ronald R. Chance; David S. Sholl; Christopher W. Jones; Sankar Nair

Nanoporous zeolitic imidazolate frameworks (ZIFs) form structural topologies equivalent to zeolites. ZIFs containing only one type of imidazole linker show separation capability for limited molecular pairs. We show that the effective pore size, hydrophilicity, and organophilicity of ZIFs can be continuously and drastically tuned using mixed-linker ZIFs containing two types of linkers, allowing their use as a more general molecular separation platform. We illustrate this remarkable behavior by adsorption and diffusion measurements of hydrocarbons, alcohols, and water in mixed-linker ZIF-8(x)-90(100-x) materials with a large range of crystal sizes (338 nm to 120 μm), using volumetric, gravimetric, and PFG-NMR methods. NMR, powder FT-Raman, and micro-Raman spectroscopy unambiguously confirm the mixed-linker nature of individual ZIF crystals. Variation of the mixed-linker composition parameter (x) allows continuous control of n-butane, i-butane, butanol, and isobutanol diffusivities over 2-3 orders of magnitude and control of water and alcohol adsorption especially at low activities.


Nature Materials | 2017

From water to organics in membrane separations

Ryan P. Lively; David S. Sholl

Membrane materials provide economical means to achieve various separation processes — and their capabilities for processing organic fluids look set to expand significantly.


Science | 2016

Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes

Dong-Yeun Koh; Benjamin A. McCool; Harry W. Deckman; Ryan P. Lively

Carbon sieving to separate the similar Separating organic molecules, particularly those with almost equal sizes and similar physical properties, can be challenging and may require energy-intensive techniques such as freeze fractionation. Taking inspiration from reverse osmosis of aqueous fluids, Koh et al. describe the synthesis, characterization, and mass transport performance of carbon molecular sieve membranes for the separation of liquid-phase organic molecules at room temperature. This technique is capable of separating very similar isomers, such as ortho- and para-xylene, on an industrial scale. Science, this issue p. 804 Carbon membranes efficiently separate similarly sized organic liquid molecules and isomers. Liquid-phase separations of similarly sized organic molecules using membranes is a major challenge for energy-intensive industrial separation processes. We created free-standing carbon molecular sieve membranes that translate the advantages of reverse osmosis for aqueous separations to the separation of organic liquids. Polymer precursors were cross-linked with a one-pot technique that protected the porous morphology of the membranes from thermally induced structural rearrangement during carbonization. Permeation studies using benzene derivatives whose kinetic diameters differ by less than an angstrom show kinetically selective organic liquid reverse osmosis. Ratios of single-component fluxes for para- and ortho-xylene exceeding 25 were observed and para- and ortho- liquid mixtures were efficiently separated, with an equimolar feed enriched to 81 mole % para-xylene, without phase change and at ambient temperature.


ACS Applied Materials & Interfaces | 2011

Formation of defect-free latex films on porous fiber supports.

Ryan P. Lively; Joshua A. Mysona; Ronald R. Chance; William J. Koros

We present here the creation of a defect-free polyvinylidene chloride barrier layer on the lumen-side of a hollow fiber sorbent. Hollow fiber sorbents have previously been shown to be promising materials for enabling low-cost CO(2) capture, provided a defect-free lumen-side barrier layer can be created. Film experiments examined the effect of drying rate, latex age, substrate porosity (porous vs nonporous), and substrate hydrophobicity/hydrophilicity. Film studies show that in ideal conditions (i.e., slow drying, fresh latex, and smooth nonporous substrate), a defect-free film can be formed, whereas the other permutations of the variables investigated led to defective films. These results were extended to hollow fiber sorbents, and despite using fresh latex and relatively slow drying conditions, a defective lumen-side layer resulted. XRD and DSC indicate that polyvinylidene chloride latex develops crystallinity over time, thereby inhibiting proper film formation as confirmed by SEM and gas permeation. This and other key additional challenges associated with the porous hollow fiber substrate vs the nonporous flat substrate were overcome. By employing a toluene-vapor saturated drying gas (a swelling solvent for polyvinylidene chloride) a defect-free lumen-side barrier layer was created, as investigated by gas and water vapor permeation.


Angewandte Chemie | 2015

Composite Polymer/Oxide Hollow Fiber Contactors: Versatile and Scalable Flow Reactors for Heterogeneous Catalytic Reactions in Organic Synthesis

Eric G. Moschetta; Solymar Negretti; Kathryn M. Chepiga; Nicholas A. Brunelli; Ying Labreche; Yan Feng; Fateme Rezaei; Ryan P. Lively; William J. Koros; Huw M. L. Davies; Christopher W. Jones

Flexible composite polymer/oxide hollow fibers are used as flow reactors for heterogeneously catalyzed reactions in organic synthesis. The fiber synthesis allows for a variety of supported catalysts to be embedded in the walls of the fibers, thus leading to a diverse set of reactions that can be catalyzed in flow. Additionally, the fiber synthesis is scalable (e.g. several reactor beds containing many fibers in a module may be used) and thus they could potentially be used for the large-scale production of organic compounds. Incorporating heterogeneous catalysts in the walls of the fibers presents an alternative to a traditional packed-bed reactor and avoids large pressure drops, which is a crucial challenge when employing microreactors.

Collaboration


Dive into the Ryan P. Lively's collaboration.

Top Co-Authors

Avatar

William J. Koros

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christopher W. Jones

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ronald R. Chance

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David S. Sholl

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ying Labreche

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Fateme Rezaei

Missouri University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Realff

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sankar Nair

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ke Zhang

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yanfang Fan

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge