Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan R. Driskell is active.

Publication


Featured researches published by Ryan R. Driskell.


Nature | 2013

Distinct fibroblast lineages determine dermal architecture in skin development and repair

Ryan R. Driskell; Beate M. Lichtenberger; Esther Hoste; Kai Kretzschmar; B. D. Simons; Marika Charalambous; Sacri R. Ferrón; Yann Herault; Guillaume Pavlovic; Anne C. Ferguson-Smith; Fiona M. Watt

Fibroblasts are the major mesenchymal cell type in connective tissue and deposit the collagen and elastic fibres of the extracellular matrix (ECM). Even within a single tissue, fibroblasts exhibit considerable functional diversity, but it is not known whether this reflects the existence of a differentiation hierarchy or is a response to different environmental factors. Here we show, using transplantation assays and lineage tracing in mice, that the fibroblasts of skin connective tissue arise from two distinct lineages. One forms the upper dermis, including the dermal papilla that regulates hair growth and the arrector pili muscle, which controls piloerection. The other forms the lower dermis, including the reticular fibroblasts that synthesize the bulk of the fibrillar ECM, and the preadipocytes and adipocytes of the hypodermis. The upper lineage is required for hair follicle formation. In wounded adult skin, the initial wave of dermal repair is mediated by the lower lineage and upper dermal fibroblasts are recruited only during re-epithelialization. Epidermal β-catenin activation stimulates the expansion of the upper dermal lineage, rendering wounds permissive for hair follicle formation. Our findings explain why wounding is linked to formation of ECM-rich scar tissue that lacks hair follicles. They also form a platform for discovering fibroblast lineages in other tissues and for examining fibroblast changes in ageing and disease.


Journal of Cell Science | 2011

Hair follicle dermal papilla cells at a glance

Ryan R. Driskell; Carlos Clavel; Michael Rendl; Fiona M. Watt

Mammalian skin is a highly tractable tissue in which to explore epithelial–mesenchymal interactions during development and in postnatal life ([Blanpain and Fuchs, 2009][1]; [Muller-Rover et al., 2001][2]; [Schmidt-Ullrich and Paus, 2005][3]; [Watt and Jensen, 2009][4]). One population of


Nature Protocols | 2010

Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis

Kim B. Jensen; Ryan R. Driskell; Fiona M. Watt

In this protocol, we describe how to isolate keratinocytes from adult mouse epidermis, fractionate them into different sub-populations on the basis of cell surface markers and examine their function in an in vivo skin reconstitution assay with disaggregated neonatal dermal cells. We also describe how the isolated keratinocytes can be subjected to clonal analysis in vitro and in vivo and how to enrich for hair follicle-inducing dermal papilla cells in the dermal preparation. Using these approaches, it is possible to compare the capacity of different populations of adult epidermal stem cells to proliferate and to generate progeny that differentiate along the different epidermal lineages. Isolating, fractionating and grafting cells for the skin reconstitution assay is normally spread over 2 d. Clonal growth in culture is assessed after 14 d, while evaluation of the grafts is carried out after 4–5 weeks.


Philosophical Transactions of the Royal Society B | 2010

The therapeutic potential of stem cells

Fiona M. Watt; Ryan R. Driskell

In recent years, there has been an explosion of interest in stem cells, not just within the scientific and medical communities but also among politicians, religious groups and ethicists. Here, we summarize the different types of stem cells that have been described: their origins in embryonic and adult tissues and their differentiation potential in vivo and in culture. We review some current clinical applications of stem cells, highlighting the problems encountered when going from proof-of-principle in the laboratory to widespread clinical practice. While some of the key genetic and epigenetic factors that determine stem cell properties have been identified, there is still much to be learned about how these factors interact. There is a growing realization of the importance of environmental factors in regulating stem cell behaviour and this is being explored by imaging stem cells in vivo and recreating artificial niches in vitro. New therapies, based on stem cell transplantation or endogenous stem cells, are emerging areas, as is drug discovery based on patient-specific pluripotent cells and cancer stem cells. What makes stem cell research so exciting is its tremendous potential to benefit human health and the opportunities for interdisciplinary research that it presents.


Trends in Cell Biology | 2015

Understanding fibroblast heterogeneity in the skin

Ryan R. Driskell; Fiona M. Watt

Fibroblasts are found in most tissues, yet they remain poorly characterised. Different fibroblast subpopulations with distinct functions have been identified in the skin. This functional heterogeneity reflects the varied fibroblast lineages that arise from a common embryonic precursor. In addition to autocrine signals, fibroblasts are highly responsive to Wnt-regulated signals from the overlying epidermis, which can act both locally, via extracellular matrix (ECM) deposition, and via secreted factors that impact the behaviour of fibroblasts in different dermal locations. These findings may explain some of the changes that occur in connective tissue during wound healing and cancer progression.


Experimental Dermatology | 2014

Defining dermal adipose tissue

Ryan R. Driskell; Colin A. B. Jahoda; Cheng-Ming Chuong; Fiona M. Watt; Valerie Horsley

Here, we explore the evolution and development of skin‐associated adipose tissue with the goal of establishing nomenclature for this tissue. Underlying the reticular dermis, a thick layer of adipocytes exists that encases mature hair follicles in rodents and humans. The association of lipid‐filled cells with the skin is found in many invertebrate and vertebrate species. Historically, this layer of adipocytes has been termed subcutaneous adipose, hypodermis and subcutis. Recent data have revealed a common precursor for dermal fibroblasts and intradermal adipocytes during development. Furthermore, the development of adipocytes in the skin is independent from that of subcutaneous adipose tissue development. Finally, the role of adipocytes has been shown to be relevant for epidermal homoeostasis during hair follicle regeneration and wound healing. Thus, we propose a refined nomenclature for the cells and adipose tissue underlying the reticular dermis as intradermal adipocytes and dermal white adipose tissue, respectively.


Methods in Enzymology | 2006

Stem Cells in the Lung

Xiaoming Liu; Ryan R. Driskell; John F. Engelhardt

The lung is composed of two major anatomically distinct regions-the conducting airways and gas-exchanging airspaces. From a cell biology standpoint, the conducting airways can be further divided into two major compartments, the tracheobronchial and bronchiolar airways, while the alveolar regions of the lung make up the gas-exchanging airspaces. Each of these regions consists of distinct epithelial cell types with unique cellular physiologies and stem cell compartments. This chapter focuses on model systems with which to study stem cells in the adult tracheobronchial airways, also referred to as the proximal airway of the lung. Important in such models is an appreciation for the diversity of stem cell niches in the conducting airways that provide localized environmental signals to both maintain and mobilize stem cells in the setting of airway injury and normal cellular turnover. Because cellular turnover in airways is relatively slow, methods for analysis of stem cells in vivo have required prior injury to the lung. In contrast, ex vivo and in vitro models for analysis of airway stem cells have used genetic markers to track lineage relationships together with reconstitution systems that mimic airway biology. Over the past decades, several widely acceptable methods have been developed and used in the characterization of adult airway stem/progenitor cells. These include localization of label-retaining cells (LRCs), retroviral tagging of epithelial cells seeded into xenografts, air-liquid interface cultures to track clonal proliferative potential, and multiple transgenic mouse models. This chapter reviews the biologic context and use of these models while providing detailed methods for several of the more broadly useful models for studying adult airway stem/progenitor cell types.


Journal of Investigative Dermatology | 2012

Clonal Growth of Dermal Papilla Cells in Hydrogels Reveals Intrinsic Differences between Sox2-Positive and -Negative Cells In Vitro and In Vivo

Ryan R. Driskell; Vikram R. Juneja; John T. Connelly; Kai Kretzschmar; David W. M. Tan; Fiona M. Watt

In neonatal mouse skin, two types of dermal papilla (DP) are distinguished by Sox2 expression: CD133+Sox2+ DP are associated with guard/awl/auchene hairs, whereas CD133+Sox2− DP are associated with zigzag (ZZ) hairs. We describe a three-dimensional hydrogel culture system that supports clonal growth of CD133+Sox2+, CD133+Sox2−, and CD133−Sox2− (non-DP) neonatal dermal cells. All three cell populations formed spheres that expressed the DP markers alkaline phosphatase, α8 integrin, and CD133. Nevertheless, spheres formed by CD133− cells did not efficiently support hair follicle formation in skin reconstitution assays. In the presence of freshly isolated P2 dermal cells, CD133+Sox2+ and CD133+Sox2− spheres contributed to the DP of both AA and ZZ hairs. Hair type did not correlate with sphere size. Sox2 expression was maintained in culture, but not induced significantly in Sox2− cells in vitro or in vivo, suggesting that Sox2+ cells are a distinct cellular lineage. Although Sox2+ cells were least efficient at forming spheres, they had the greatest ability to contribute to DP and non-DP dermis in reconstituted skin. As the culture system supports clonal growth of DP cells and maintenance of distinct DP cell types, it will be useful for further analysis of intrinsic and extrinsic signals controlling DP function.


Current Topics in Developmental Biology | 2004

Airway glandular development and stem cells.

Xiaoming Liu; Ryan R. Driskell; John F. Engelhardt

Submucosal glands in the lung play important roles in several hypersecretory lung disease processes, including chronic bronchitis, asthma, and cystic fibrosis. In this context, submucosal glands undergo abnormal growth and differentiation through processes that are poorly understood. To better understand the pathophysiological mechanisms that lead to submucosal gland hypertrophy and hyperplasia in the adult human lung, efforts have been made to dissect the molecular signals and cell types responsible for normal submucosal gland development in the airway. Such studies have revealed a close relationship between progenitor?stem cell phenotypes in the surface airway epithelia and submucosal glands, and thus it has been suggested that submucosal glands serve as a protective niche for surface airway epithelial stem cells. Furthermore, the pluripotent progenitor cells that exist in the surface airway epithelium, which have the capacity to differentiate into ciliated, secretory, intermediate, and basal cells, also have a developmental capacity for submucosal glands. This putative adult stem cell compartment of the airway epithelium has been the focus of research attempting to identify molecular markers for signaling pathways that control stem cell phenotypes and their capacity for proliferation and differentiation following airway injury.


Journal of Virology | 2004

Targeted Correction of Single-Base-Pair Mutations with Adeno-Associated Virus Vectors under Nonselective Conditions

Xiaoming Liu; Ziying Yan; Meihui Luo; Roman Zak; Ziyi Li; Ryan R. Driskell; Yumao Huang; Nam Tran; John F. Engelhardt

ABSTRACT Recombinant adeno-associated virus (rAAV) vectors possess the unique ability to introduce genetic alterations at sites of homology in genomic DNA through a mechanism thought to predominantly involve homologous recombination. We have investigated the efficiency of this approach using a mutant enhanced green fluorescent protein (eGFP) fluorescence recovery assay that facilitates detection of gene correction events in living cells under nonselective conditions. Our data demonstrate that rAAV infection can correct a mutant eGFP transgene at an efficiency of 0.1% in 293 cells, as determined by fluorescence-activated cell-sorting analysis. Gene repair was also confirmed using clonal expansion of GFP-positive cells and sequencing of the eGFP transgene. These results support previous findings demonstrating the efficacy of rAAV for gene targeting. In an effort to improve gene-targeting efficiencies, we evaluated several agents known to increase rAAV transduction (i.e., expression of an expressed gene), including genotoxic stress and proteasome inhibitors, but observed no correlation between the level of gene repair and rAAV transduction. Interestingly, however, our results demonstrated that enrichment of G1/S-phase cells in the target population through the addition of thymidine moderately (∼2-fold) increased gene correction compared to cells in other cell cycle phases, including G0/G1, G1, and G2/M. These results suggest that the S phase of the cell cycle may more efficiently facilitate gene repair by rAAV. Transgenic mice expressing the mutant GFP were used to evaluate rAAV targeting efficiencies in primary fetal fibroblast and tibialis muscles. However, targeting efficiencies in primary mouse fetal fibroblasts were significantly lower (∼0.006%) than in 293 cells, and no correction was seen in tibialis muscles following rAAV infection. To evaluate the molecular structures of rAAV genomes that might be responsible for gene repair, single-cell injection studies were performed with purified viral DNA in a mutant eGFP target cell line. However, the failure of direct cytoplasm- or nucleus-injected rAAV DNA to facilitate gene repair suggests that some aspect of intracellular viral processing may be required to prime recombinant viral genomes for gene repair events.

Collaboration


Dive into the Ryan R. Driskell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Kretzschmar

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge