Ryan S. Austin
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ryan S. Austin.
Plant Journal | 2011
Ryan S. Austin; Danielle Vidaurre; George Stamatiou; Robert Breit; Nicholas J. Provart; Dario Bonetta; Jianfeng Zhang; Pauline Fung; Yunchen Gong; Pauline W. Wang; Peter McCourt; David S. Guttman
Next-generation genomic sequencing technologies have made it possible to directly map mutations responsible for phenotypes of interest via direct sequencing. However, most mapping strategies proposed to date require some prior genetic analysis, which can be very time-consuming even in genetically tractable organisms. Here we present a de novo method for rapidly and robustly mapping the physical location of EMS mutations by sequencing a small pooled F₂ population. This method, called Next Generation Mapping (NGM), uses a chastity statistic to quantify the relative contribution of the parental mutant and mapping lines to each SNP in the pooled F₂ population. It then uses this information to objectively localize the candidate mutation based on its exclusive segregation with the mutant parental line. A user-friendly, web-based tool for performing NGM analysis is available at http://bar.utoronto.ca/NGM. We used NGM to identify three genes involved in cell-wall biology in Arabidopsis thaliana, and, in a power analysis, demonstrate success in test mappings using as few as ten F₂ lines and a single channel of Illumina Genome Analyzer data. This strategy can easily be applied to other model organisms, and we expect that it will also have utility in crops and any other eukaryote with a completed genome sequence.
Developmental Cell | 2011
Cara M. Winter; Ryan S. Austin; Servane Blanvillain-Baufumé; Maxwell A. Reback; Marie Monniaux; Miin-Feng Wu; Yi Sang; Ayako Yamaguchi; Nobutoshi Yamaguchi; Jane E. Parker; François Parcy; Shane T. Jensen; Hongzhe Li; Doris Wagner
The transition from vegetative growth to flower formation is critical for the survival of flowering plants. The plant-specific transcription factor LEAFY (LFY) has central, evolutionarily conserved roles in this process, both in the formation of the first flower and later in floral patterning. We performed genome-wide binding and expression studies to elucidate the molecular mechanisms by which LFY executes these roles. Our study reveals that LFY directs an elaborate regulatory network in control of floral homeotic gene expression. LFY also controls the expression of genes that regulate the response to external stimuli in Arabidopsis. Thus, our findings support a key role for LFY in the coordination of reproductive stage development and disease response programs in plants that may ensure optimal allocation of plant resources for reproductive fitness. Finally, motif analyses reveal a possible mechanism for stage-specific LFY recruitment and suggest a role for LFY in overcoming polycomb repression.
PLOS ONE | 2009
Paul F. Morris; Laura Rose Schlosser; Katherine Diane Onasch; Tom Wittenschlaeger; Ryan S. Austin; Nicholas J. Provart
Complex enzymes with multiple catalytic activities are hypothesized to have evolved from more primitive precursors. Global analysis of the Phytophthora sojae genome using conservative criteria for evaluation of complex proteins identified 273 novel multifunctional proteins that were also conserved in P. ramorum. Each of these proteins contains combinations of protein motifs that are not present in bacterial, plant, animal, or fungal genomes. A subset of these proteins were also identified in the two diatom genomes, but the majority of these proteins have formed after the split between diatoms and oomycetes. Documentation of multiple cases of domain fusions that are common to both oomycetes and diatom genomes lends additional support for the hypothesis that oomycetes and diatoms are monophyletic. Bifunctional proteins that catalyze two steps in a metabolic pathway can be used to infer the interaction of orthologous proteins that exist as separate entities in other genomes. We postulated that the novel multifunctional proteins of oomycetes could function as potential Rosetta Stones to identify interacting proteins of conserved metabolic and regulatory networks in other eukaryotic genomes. However ortholog analysis of each domain within our set of 273 multifunctional proteins against 39 sequenced bacterial and eukaryotic genomes, identified only 18 candidate Rosetta Stone proteins. Thus the majority of multifunctional proteins are not Rosetta Stones, but they may nonetheless be useful in identifying novel metabolic and regulatory networks in oomycetes. Phylogenetic analysis of all the enzymes in three pathways with one or more novel multifunctional proteins was conducted to determine the probable origins of individual enzymes. These analyses revealed multiple examples of horizontal transfer from both bacterial genomes and the photosynthetic endosymbiont in the ancestral genome of Stramenopiles. The complexity of the phylogenetic origins of these metabolic pathways and the paucity of Rosetta Stones relative to the total number of multifunctional proteins suggests that the proteome of oomycetes has few features in common with other Kingdoms.
BMC Genomics | 2013
Di Wu; Ryan S. Austin; Sijun Zhou; Daniel C.W. Brown
BackgroundGinseng including North American ginseng (Panax quinquefolius L.) is one of the most widely used medicinal plants. Its success is thought to be due to a diverse collection of ginsenosides that serve as its major bioactive compounds. However, few genomic resources exist and the details concerning its various biosynthetic pathways remain poorly understood. As the root is the primary tissue harvested commercially for ginsenosides, next generation sequencing was applied to the characterization and assembly of the root transcriptome throughout seasonal development. Transcripts showing homology to ginsenoside biosynthesis enzymes were profiled in greater detail.ResultsRNA extracts from root samples from seven development stages of North American ginseng were subjected to 454 sequencing, filtered for quality and used in the de novo assembly of a collective root reference transcriptome consisting of 41,623 transcripts. Annotation efforts using a number of public databases resulted in detailed annotation information for 34,801 (84%) transcripts. In addition, 3,955 genes were assigned to metabolic pathways using the Kyoto Encyclopedia of Genes and Genomes. Among our results, we found all of the known enzymes involved in the ginsenoside backbone biosynthesis and used co-expression analysis to identify a number of candidate sequences involved in the latter stages ginsenoside biosynthesis pathway. Transcript profiles suggest ginsenoside biosynthesis occurs at distinct stages of development.ConclusionsThe assembly generated provides a comprehensive annotated reference for future transcriptomic study of North American ginseng. A collection of putative ginsenoside biosynthesis genes were identified and candidate genes predicted from the lesser understood downstream stages of biosynthesis. Transcript expression profiles across seasonal development suggest a primary dammarane-type ginsenoside biosynthesis occurs just prior to plant senescence, with secondary ginsenoside production occurring throughout development. Data from the study provide a valuable resource for conducting future ginsenoside biosynthesis research in this important medicinal plant.
Nature Genetics | 2017
Jun Xiao; Run Jin; Xiang Yu; Max Shen; John Wagner; Armaan Pai; Claire Song; Michael Zhuang; Samantha Klasfeld; Chongsheng He; Alexandre M Santos; Chris A. Helliwell; Jose L. Pruneda-Paz; Steve A. Kay; Xiaowei Lin; Sujuan Cui; Meilin Fernandez Garcia; Oliver Clarenz; Justin Goodrich; Xiaoyu Zhang; Ryan S. Austin; Roberto Bonasio; Doris Wagner
Disruption of gene silencing by Polycomb protein complexes leads to homeotic transformations and altered developmental-phase identity in plants. Here we define short genomic fragments, known as Polycomb response elements (PREs), that direct Polycomb repressive complex 2 (PRC2) placement at developmental genes regulated by silencing in Arabidopsis thaliana. We identify transcription factor families that bind to these PREs, colocalize with PRC2 on chromatin, physically interact with and recruit PRC2, and are required for PRC2-mediated gene silencing in vivo. Two of the cis sequence motifs enriched in the PREs are cognate binding sites for the identified transcription factors and are necessary and sufficient for PRE activity. Thus PRC2 recruitment in Arabidopsis relies in large part on binding of trans-acting factors to cis-localized DNA sequence motifs.
BMC Genomics | 2007
Ryan S. Austin; Nicholas J. Provart; Sean R. Cutler
BackgroundThe carboxy termini of proteins are a frequent site of activity for a variety of biologically important functions, ranging from post-translational modification to protein targeting. Several short peptide motifs involved in protein sorting roles and dependent upon their proximity to the C-terminus for proper function have already been characterized. As a limited number of such motifs have been identified, the potential exists for genome-wide statistical analysis and comparative genomics to reveal novel peptide signatures functioning in a C-terminal dependent manner. We have applied a novel methodology to the prediction of C-terminal-anchored peptide motifs involving a simple z-statistic and several techniques for improving the signal-to-noise ratio.ResultsWe examined the statistical over-representation of position-specific C-terminal tripeptides in 7 eukaryotic proteomes. Sequence randomization models and simple-sequence masking were applied to the successful reduction of background noise. Similarly, as C-terminal homology among members of large protein families may artificially inflate tripeptide counts in an irrelevant and obfuscating manner, gene-family clustering was performed prior to the analysis in order to assess tripeptide over-representation across protein families as opposed to across all proteins. Finally, comparative genomics was used to identify tripeptides significantly occurring in multiple species. This approach has been able to predict, to our knowledge, all C-terminally anchored targeting motifs present in the literature. These include the PTS1 peroxisomal targeting signal (SKL*), the ER-retention signal (K/HDEL*), the ER-retrieval signal for membrane bound proteins (KKxx*), the prenylation signal (CC*) and the CaaX box prenylation motif. In addition to a high statistical over-representation of these known motifs, a collection of significant tripeptides with a high propensity for biological function exists between species, among kingdoms and across eukaryotes. Motifs of note include a serine-acidic peptide (DSD*) as well as several lysine enriched motifs found in nearly all eukaryotic genomes examined.ConclusionWe have successfully generated a high confidence representation of eukaryotic motifs anchored at the C-terminus. A high incidence of true-positives in our results suggests that several previously unidentified tripeptide patterns are strong candidates for representing novel peptide motifs of a widely employed nature in the C-terminal biology of eukaryotes. Our application of comparative genomics, statistical over-representation and the adjustment for protein family homology has generated several hypotheses concerning the C-terminal topology as it pertains to sorting and potential protein interaction signals. This approach to background reduction could be expanded for application to protein motif prediction in the protein interior. A parallel N-terminal analysis is presented as supplementary data.
Functional & Integrative Genomics | 2004
Ryan S. Austin; Nicholas J. Provart; Nuno T. Sacadura; Kimberly G. Nugent; Mohan Babu; Barry J. Saville
A large-scale comparative genomic analysis of unisequence sets obtained from an Ustilago maydis EST collection was performed against publicly available EST and genomic sequence datasets from 21 species. We annotated 70% of the collection based on similarity to known sequences and recognized protein signatures. Distinct grouping of the ESTs, defined by the presence or absence of similar sequences in the species examined, allowed the identification of U. maydis sequences present only (1) in fungal species, (2) in plants but not animals, (3) in animals but not plants, or (4) in all three eukaryotic lineages assessed. We also identified 215 U. maydis genes that are found in the ascomycete but not in the basidiomycete genome sequences searched. Candidate genes were identified for further functional characterization. These include 167 basidiomycete-specific sequences, 58 fungal pathogen-specific sequences (including 37 basidiomycete pathogen-specific sequences), and 18 plant pathogen-specific sequences, as well as two sequences present only in other plant pathogen and plant species.
PLOS ONE | 2014
Ren Na; Dan Yu; B. Patrick Chapman; Yun Zhang; Kuflom Kuflu; Ryan S. Austin; Dinah Qutob; Jun Zhao; Yuanchao Wang; Mark Gijzen
The aim of this work was to map and identify the Phytophthora sojae Avr1c gene. Progeny from a cross of P. sojae strains ACR10×P7076 were tested for virulence on plants carrying Rps1c. Results indicate that avirulence segregates as a dominant trait. We mapped the Avr1c locus by performing whole genome re-sequencing of composite libraries created from pooled samples. Sequence reads from avirulent (Pool1) and virulent (Pool2) samples were aligned to the reference genome and single nucleotide polymorphisms (SNP) were identified for each pool. High quality SNPs were filtered to select for positions where SNP frequency was close to expected values for each pool. Only three SNP positions fit all requirements, and these occurred in close proximity. Additional DNA markers were developed and scored in the F2 progeny, producing a fine genetic map that places Avr1c within the Avr1a gene cluster. Transient expression of Avr1c or Avr1a triggers cell death on Rps1c plants, but Avr1c does not trigger cell death on Rps1a plants. Sequence comparisons show that the RXLR effector genes Avr1c and Avr1a are closely related paralogs. Gain of virulence on Rps1c in P. sojae strain P7076 is achieved by gene deletion, but in most other strains this is accomplished by gene silencing. This work provides practical tools for crop breeding and diagnostics, as the Rps1c gene is widely deployed in commercial soybean cultivars.
Plant Journal | 2016
Ryan S. Austin; Shu Hiu; Jamie Waese; Matthew Ierullo; Asher Pasha; Ting Ting Wang; Jim Fan; Curtis Foong; Robert Breit; Darrell Desveaux; Alan M. Moses; Nicholas J. Provart
Identifying sets of genes that are specifically expressed in certain tissues or in response to an environmental stimulus is useful for designing reporter constructs, generating gene expression markers, or for understanding gene regulatory networks. We have developed an easy-to-use online tool for defining a desired expression profile (a modification of our Expression Angler program), which can then be used to identify genes exhibiting patterns of expression that match this profile as closely as possible. Further, we have developed another online tool, Cistome, for predicting or exploring cis-elements in the promoters of sets of co-expressed genes identified by such a method, or by other methods. We present two use cases for these tools, which are freely available on the Bio-Analytic Resource at http://BAR.utoronto.ca.
Journal of Experimental Botany | 2012
Dengqun Liao; Agnieszka Pajak; Steven R. Karcz; B. Patrick Chapman; Andrew G. Sharpe; Ryan S. Austin; Raju Datla; Sangeeta Dhaubhadel; Frédéric Marsolais
The lack of phaseolin and phytohaemagglutinin in common bean (dry bean, Phaseolus vulgaris) is associated with an increase in total cysteine and methionine concentrations by 70% and 10%, respectively, mainly at the expense of an abundant non-protein amino acid, S-methyl-cysteine. Transcripts were profiled between two genetically related lines differing for this trait at four stages of seed development using a high density microarray designed for common bean. Transcripts of multiple sulphur-rich proteins were elevated, several previously identified by proteomics, including legumin, basic 7S globulin, albumin-2, defensin, albumin-1, the Bowman–Birk type proteinase inhibitor, the double-headed trypsin inhibitor, and the Kunitz trypsin inhibitor. A co-ordinated regulation of transcripts coding for sulphate transporters, sulphate assimilatory enzymes, serine acetyltransferases, cystathionine β-lyase, homocysteine S-methyltransferase and methionine gamma-lyase was associated with changes in cysteine and methionine concentrations. Differential gene expression of sulphur-rich proteins preceded that of sulphur metabolic enzymes, suggesting a regulation by demand from the protein sink. Up-regulation of SERAT1;1 and -1;2 expression revealed an activation of cytosolic O-acetylserine biosynthesis. Down-regulation of SERAT2;1 suggested that cysteine and S-methyl-cysteine biosynthesis may be spatially separated in different subcellular compartments. Analysis of free amino acid profiles indicated that enhanced cysteine biosynthesis was correlated with a depletion of O-acetylserine. These results contribute to our understanding of the regulation of sulphur metabolism in developing seed in response to a change in the composition of endogenous proteins.