Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan T. Armstrong is active.

Publication


Featured researches published by Ryan T. Armstrong.


Geophysical Research Letters | 2015

From connected pathway flow to ganglion dynamics

M. Rücker; Steffen Berg; Ryan T. Armstrong; A. Georgiadis; H. Ott; Alex Schwing; R. Neiteler; N. Brussee; A. Makurat; L. Leu; Martin Wolf; Faisal Khan; Frieder Enzmann; Michael Kersten

During imbibition, initially connected oil is displaced until it is trapped as immobile clusters. While initial and final states have been well described before, here we image the dynamic transient process in a sandstone rock using fast synchrotron-based X-ray computed microtomography. Wetting film swelling and subsequent snap off, at unusually high saturation, decreases nonwetting phase connectivity, which leads to nonwetting phase fragmentation into mobile ganglia, i.e., ganglion dynamics regime. We find that in addition to pressure-driven connected pathway flow, mass transfer in the oil phase also occurs by a sequence of correlated breakup and coalescence processes. For example, meniscus oscillations caused by snap-off events trigger coalescence of adjacent clusters. The ganglion dynamics occurs at the length scale of oil clusters and thus represents an intermediate flow regime between pore and Darcy scale that is so far dismissed in most upscaling attempts.


Water Resources Research | 2016

Pore-scale displacement mechanisms as a source of hysteresis for two-phase flow in porous media

Steffen Schlüter; Steffen Berg; M. Rücker; Ryan T. Armstrong; Hans-Jörg Vogel; R. Hilfer; Dorthe Wildenschild

The macroscopic description of the hysteretic behavior of two-phase flow in porous media remains a challenge. It is not obvious how to represent the underlying pore-scale processes at the Darcy-scale in a consistent way. Darcy-scale thermodynamic models do not completely eliminate hysteresis and our findings indicate that the shape of displacement fronts is an additional source of hysteresis that has not been considered before. This is a shortcoming because effective process behavior such as trapping efficiency of CO2 or oil production during water flooding are directly linked to pore-scale displacement mechanisms with very different front shape such as capillary fingering, flat frontal displacement, or cluster growth. Here we introduce fluid topology, expressed by the Euler characteristic of the nonwetting phase (χn), as a shape measure of displacement fronts. Using two high-quality data sets obtained by fast X-ray tomography, we show that χn is hysteretic between drainage and imbibition and characteristic for the underlying displacement pattern. In a more physical sense, the Euler characteristic can be interpreted as a parameter describing local fluid connectedness. It may provide the closing link between a topological characterization and macroscopic formulations of two-phase immiscible displacement in porous rock. Since fast X-ray tomography is currently becoming a mature technique, we expect a significant growth in high-quality data sets of real time fluid displacement processes in the future. The novel measures of fluid topology presented here have the potential to become standard metrics needed to fully explore them.


Water Resources Research | 2014

Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow.

Ryan T. Armstrong; H. Ott; A. Georgiadis; Maja Rücker; Alex Schwing; Steffen Berg

With recent advances at X-ray microcomputed tomography (μCT) synchrotron beam lines, it is now possible to study pore-scale flow in porous rock under dynamic flow conditions. The collection of four-dimensional data allows for the direct 3-D visualization of fluid-fluid displacement in porous rock as a function of time. However, even state-of-the-art fast-μCT scans require between one and a few seconds to complete and the much faster fluid movement occurring during that time interval is manifested as imaging artifacts in the reconstructed 3-D volume. We present an approach to analyze the 2-D radiograph data collected during fast-μCT to study the pore-scale displacement dynamics on the time scale of 40 ms which is near the intrinsic time scale of individual Haines jumps. We present a methodology to identify the time intervals at which pore-scale displacement events in the observed field of view occur and hence, how reconstruction intervals can be chosen to avoid fluid-movement-induced reconstruction artifacts. We further quantify the size, order, frequency, and location of fluid-fluid displacement at the millisecond time scale. We observe that after a displacement event, the pore-scale fluid distribution relaxes to (quasi-) equilibrium in cascades of pore-scale fluid rearrangements with an average relaxation time for the whole cascade between 0.5 and 2.0 s. These findings help to identify the flow regimes and intrinsic time and length scales relevant to fractional flow. While the focus of the work is in the context of multiphase flow, the approach could be applied to many different μCT applications where morphological changes occur at a time scale less than that required for collecting a μCT scan.


Transport in Porous Media | 2012

Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation

Ryan T. Armstrong; Dorthe Wildenschild

Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.


Transport in Porous Media | 2017

Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry

Zhishang Liu; Anna L. Herring; Christoph H. Arns; Steffen Berg; Ryan T. Armstrong

The pore-scale morphological description of two-phase flow is fundamental to the understanding of relative permeability. In this effort, we visualize multiphase flow during core flooding experiments using X-ray microcomputed tomography. Resulting phase morphologies are quantified using Minkowski Functionals and relative permeability is measured using an image-based method where lattice Boltzmann simulations are conducted on connected phases from pore-scale images. A capillary drainage transform is also employed on the imaged rock structure, which provides reasonable results for image-based relative permeability measurements even though it provides pore-scale morphologies for the wetting phase that are not comparable to the experimental data. For the experimental data, there is a strong correlation between non-wetting phase Euler characteristic and relative permeability, whereas there is a weak correlation for the wetting phase topology. The relative permeability of some rock types is found to be more sensitive to topological changes than others, demonstrating the influence that phase connectivity has on two-phase flow. We demonstrate the influence that phase morphology has on relative permeability and provide insight into phase topological changes that occur during multiphase flow.


Transport in Porous Media | 2016

Modeling of Pore-Scale Two-Phase Phenomena Using Density Functional Hydrodynamics

Ryan T. Armstrong; Steffen Berg; Oleg Yurievich Dinariev; Nikolay Evseev; Denis Klemin; Dmitry Anatolievich Koroteev; Sergey Sergeevich Safonov

Predictive modeling of pore-scale multiphase flow is a powerful instrument that enhances understanding of recovery potential of subsurface formations. To endow a pore-scale modeling tool with predictive capabilities, one needs to be sure that this tool is capable, in the first place, of reproducing basic phenomena inherent in multiphase processes. In this paper, we overview numerical simulations performed by means of density functional hydrodynamics of several important multiphase flow mechanisms. In one of the reviewed cases, snap-off in free fluid, we demonstrate one-to-one comparison between numerical simulation and experiment. In another case, geometry-constrained snap-off, we show consistency of our modeling with theoretical criterion. In other more complex cases such as flow in pore doublets and simple system of pores, we demonstrate consistency of our modeling with published data and with existing understanding of the processes in question.


Physical Review E | 2015

Capillary saturation and desaturation.

R. Hilfer; Ryan T. Armstrong; Steffen Berg; A. Georgiadis; H. Ott

Capillary desaturation experiments produce disconnected (trapped) ganglia of mesoscopic sizes intermediate between pore size and system size. Experimental evidence for interactions between these mesoscale clusters during desaturation is analyzed and discussed within the established microscopic and macroscopic laws of Newton, Young-Laplace, and Darcy. A theoretical expression for capillary number correlations is introduced that seems to have remained unnoticed. It expresses capillary desaturation curves in terms of stationary capillary pressures and relative permeabilities. The theoretical expression shows that the plateau saturation in capillary desaturation curves may in general differ from the residual nonwetting saturation defined through the saturation limit of the main hysteresis loop. Hysteresis effects as well as the difference between wetting and nonwetting fluids are introduced into the analysis of capillary desaturation experiments. The article examines experiments with different desaturation protocols and discusses the existence of a mesoscopic length scale intermediate between pore scale and sample scale. The theoretical expression is derived entirely within the existing traditional theory of two-phase flow in porous media and compared to a recent experiment.


Langmuir | 2016

Pore Scale Dynamics of Microemulsion Formation

Evren Unsal; Marc Broens; Ryan T. Armstrong

Experiments in various porous media have shown that multiple parameters come into play when an oleic phase is displaced by an aqueous solution of surfactant. In general, the displacement efficiency is improved when the fluids become quasi-miscible. Understanding the phase behavior oil/water/surfactant systems is important because microemulsion has the ability to generate ultralow interfacial tension (<10(-2) mN m(-1)) that is required for miscibility to occur. Many studies focus on microemulsion formation and the resulting properties under equilibrium conditions. However, the majority of applications where microemulsion is present also involve flow, which has received relatively less attention. It is commonly assumed that the characteristics of an oil/water/surfactant system under flowing conditions are identical to the one under equilibrium conditions. Here, we show that this is not necessarily the case. We studied the equilibrium phase behavior of a model system consisting of n-decane and an aqueous solution of olefin sulfonate surfactant, which has practical applications for enhanced oil recovery. The salt content of the aqueous solution was varied to provide a range of different microemulsion compositions and oil-water interfacial tensions. We then performed microfluidic flow experiments to study the dynamic in situ formation of microemulsion by coinjecting bulk fluids of n-decane and surfactant solution into a T-junction capillary geometry. A solvatochromatic fluorescent dye was used to obtain spatially resolved compositional information. In this way, we visualized the microemulsion formation and the flow of it along with the excess phases. A complex interaction between the flow patterns and the microemulsion properties was observed. The formation of microemulsion influenced the flow regimes, and the flow regimes affected the characteristics of the microemulsion formation. In particular, at low flow rates, slug flow was observed, which had profound consequences on the pore scale mixing behavior and resulting microemulsion properties.


Journal of Microscopy | 2018

Dynamic imaging of multiphase flow through porous media using 4D cumulative reconstruction: DYNAMIC IMAGING OF MULTIPHASE FLOW

M.N. D'eurydice; Christoph H. Arns; Ji-Youn Arns; Ryan T. Armstrong

This paper introduces an original application on reconstruction strategies for X‐ray computed microtomography, enabling the observation of time‐dependent changes that occur during multiphase flow. In general, by sparsely collecting radiographs, the reconstruction of the object is compromised. Optimizations can be achieved by combining specific characteristics of the dynamics with the acquisition. Herein, the proposed method relies on short random intervals in which no drastic changes occur in the sample to acquire as many radiographs as possible that constitute a reconstructible data set. As these intervals are unpredictable, the method tries to guarantee that the collected radiograph data during these specific intervals are enough to recover useful information about the dynamics. Simulations of a percolating fluid in a digital rock are used to replicate an X‐ray computed microtomography experiment to test the proposed method. The results demonstrate the potential of the proposed strategy for imaging multiphase flow in porous media and how data collected during distinct events can be combined to enhance the reconstruction of frames of the percolation process.


SPE/AAPG/SEG Unconventional Resources Technology Conference | 2017

Determination of Local Diffusion Coefficients and Directional Anisotropy in Shale From Dynamic Micro-CT Imaging

Yulai Zhang; Peyman Mostaghimi; Andrew Fogden; Alessio Arena; Adrian Sheppard; Jill Middleton; Ryan T. Armstrong

This research/project was undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government. We acknowledge funding from the member companies of the ANU/UNSW Digicore research consortium.

Collaboration


Dive into the Ryan T. Armstrong's collaboration.

Top Co-Authors

Avatar

Peyman Mostaghimi

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamed Lamei Ramandi

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Yu Jing

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alireza Gerami

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge