Ryne C. Johnston
Oregon State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ryne C. Johnston.
Journal of the American Chemical Society | 2014
Ki Po Jang; Gerri E. Hutson; Ryne C. Johnston; Elizabeth O’Bryan McCusker; Paul Ha-Yeon Cheong; Karl A. Scheidt
A highly selective NHC-catalyzed synthesis of γ-butyrolactones from the fusion of enals and α-ketophosphonates has been developed. Computational modeling of competing transition states guided a rational design strategy to achieve enhanced levels of enantioselectivity with a new tailored C1-symmetric biaryl-saturated imidazolium-derived NHC catalyst.
Accounts of Chemical Research | 2016
Daniel M. Walden; O. Maduka Ogba; Ryne C. Johnston; Paul Ha-Yeon Cheong
The flexibility, complexity, and size of contemporary organocatalytic transformations pose interesting and powerful opportunities to computational and experimental chemists alike. In this Account, we disclose our recent computational investigations of three branches of organocatalysis in which nonbonding interactions, such as C-H···O/N interactions, play a crucial role in the organization of transition states, catalysis, and selectivity. We begin with two examples of N-heterocyclic carbene (NHC) catalysis, both collaborations with the Scheidt laboratory at Northwestern. In the first example, we discuss the discovery of an unusual diverging mechanism in a catalytic kinetic resolution of a dynamic racemate that depends on the stereochemistry of the product being formed. Specifically, the major product is formed through a concerted asynchronous [2 + 2] aldol-lactonization, while the minor products come from a stepwise spiro-lactonization pathway. Stereoselectivity and catalysis are the results of electrophilic activation from C-H···O interactions between the catalyst and the substrate and conjugative stabilization of the electrophile. In the second example, we show how knowledge and understanding of the computed transition states led to the development of a more enantioselective NHC catalyst for the butyrolactonization of acyl phosphonates. The identification of mutually exclusive C-H···O interactions in the computed major and minor TSs directly resulted in structural hypotheses that would lead to targeted destabilization of the minor TS, leading to enhanced stereoinduction. Synthesis and evaluation of the newly designed NHC catalyst validated our hypotheses. Next, we discuss two works related to Lewis base catalysis involving 4-dimethylaminopyridine (DMAP) and its derivatives. In the first, we discuss our collaboration with the Smith laboratory at St Andrews, in which we discovered the origins of the regioselectivity in carboxyl transfer reactions. We disclose how different Lewis base catalysts (NHC or DMAP) can lead to different regiomeric products as a result of differing magnitudes of aromatic and C-H···O interactions present in the respective transition states. In the second example, we discuss the mechanism and origins of the stereoselectivity of a reaction catalyzed by a planar-chiral 4-(pyrrolidino)pyridine derivative, namely, the coupling of ketenes with cyanopyrrole. We discovered that the chiral base mechanism is operative, in contrast to the originally proposed Brønsted acid mechanism. The selectivity is determined by the ease with which the major and minor TSs can realize strong stabilizing C-H···N interactions between the pyrrole cyano group and the catalyst. These interactions induce increased catalyst distortion in the minor TS, thereby leading to enantioselectivity. Finally, we discuss our computations related to amine-based organocatalysis in collaboration with the Carter laboratory at Oregon State. We probed the mechanism and stereoselectivity of a bifunctional amine thiourea-catalyzed Michael reaction. Our computations led to the design of an improved catalyst. However, synthesis and tests revealed that this catalyst was prone to degradation to side products that also catalyze the reaction, ultimately reducing the observed enantioselectivity. Lastly, we discuss our study of the mechanism and stereoselectivity of a proline sulfonamide-catalyzed Robinson annulation, in which we discovered that the enantioselectivity is controlled by the first Michael step but the diastereoselectivity is controlled by the following Mannich step.
Journal of the American Chemical Society | 2012
Matthew D. Pierce; Ryne C. Johnston; Subham Mahapatra; Hua Yang; Rich G. Carter; Paul Ha-Yeon Cheong
Computational study of the mechanisms and stereoselectivities of a dual amino-catalyzed synthesis of cyclohexenones containing all-carbon γ-quaternary and ∂-tertiary stereocenters is reported. Extensive conformational search with density functional theory optimizations, the high-accuracy SCS-MP2/cc-pV∞Z energies, and PCM solvation corrections were used to characterize all intermediates and transition states. Six mechanisms were considered, all consistent with available experiments. The reaction proceeds via sequential Michael and Mannich conjugate additions whereby the primary amine activates the aldehyde and the catalyst activates the pentenone. We have discovered a rare duumvirate stereocontrol: the Michael reaction sets the enantioselectivity, but both the Michael and the Mannich reactions control the diastereoselectivity.
Chemical Science | 2014
Ryne C. Johnston; Daniel T. Cohen; Chad C. Eichman; Karl A. Scheidt; Paul Ha-Yeon Cheong
This study describes the combined experimental and computational elucidation of the mechanism and origins of stereoselectivities in the NHC-catalyzed dynamic kinetic resolution (DKR) of α-substituted-β-ketoesters. Density functional theory computations reveal that the NHC-catalyzed DKR proceeds by two mechanisms, depending on the stereochemistry around the forming bond: 1) a concerted, asynchronous formal (2+2) aldol-lactonization process, or 2) a stepwise spiro-lactonization mechanism where the alkoxide is trapped by the NHC-catalyst. These mechanisms contrast significantly from mechanisms found and postulated in other related transformations. Conjugative stabilization of the electrophile and non-classical hydrogen bonds are key in controlling the stereoselectivity. This reaction constitutes an interesting class of DKRs in which the catalyst is responsible for the kinetic resolution to selectively and irreversibly capture an enantiomer of a substrate undergoing rapid racemization with the help of an exogenous base.
Journal of Organic Chemistry | 2012
Melissa L. McIntosh; Ryne C. Johnston; Ommidala Pattawong; Bradley O. Ashburn; Michael R. Naffziger; Paul Ha-Yeon Cheong; Rich G. Carter
Dipolar cylcoadditions with azides using a series of o-nitrophenylethynes and disubstituted alkynes were studied experimentally and computationally. Density functional theory computations reveal the steric and electronic parameters that control the regioselectivity of these cycloadditions. Several new substrates were predicted that would either give enhanced regiocontrol or invert the regiochemical preference. Experimentally, the alkynes were screened in the [3 + 2] cycloaddition with benzyl azide. Of the 11 alkynes screened experimentally, the acetylenes containing halogen substitution directly on the alkyne provided the highest levels of regioselectivity. These haloalkynes were also shown to tolerate variation of the azide moiety with continued good levels of regioselectivity in most cases. Diverse functional groups can be incorporated through the cycloaddition process and their subsequent orthogonal modification was demonstrated.
Journal of the American Chemical Society | 2017
Thomas H. West; Daniel M. Walden; James E. Taylor; Alexander C. Brueckner; Ryne C. Johnston; Paul Ha-Yeon Cheong; Guy C. Lloyd-Jones; Andrew D. Smith
A mechanistic study of the isothiourea-catalyzed enantioselective [2,3]-rearrangement of allylic ammonium ylides is described. Reaction kinetic analyses using 19F NMR and density functional theory computations have elucidated a reaction profile and allowed identification of the catalyst resting state and turnover-rate limiting step. A catalytically relevant catalyst–substrate adduct has been observed, and its constitution elucidated unambiguously by 13C and 15N isotopic labeling. Isotopic entrainment has shown the observed catalyst–substrate adduct to be a genuine intermediate on the productive cycle toward catalysis. The influence of HOBt as an additive upon the reaction, catalyst resting state, and turnover-rate limiting step has been examined. Crossover experiments have probed the reversibility of each of the proposed steps of the catalytic cycle. Computations were also used to elucidate the origins of stereocontrol, with a 1,5-S···O interaction and the catalyst stereodirecting group providing transition structure rigidification and enantioselectivity, while preference for cation−π interactions over C–H···π is responsible for diastereoselectivity.
Journal of the American Chemical Society | 2015
Xiao-Na Wang; Elizabeth H. Krenske; Ryne C. Johnston; K. N. Houk; Richard P. Hsung
We report the first experimental evidence for the generation of highly strained cis,trans-cycloheptadienones by electrocyclic ring opening of 4,5-fused cyclobutenamides. In the presence of AlCl3, the cyclobutenamides rearrange to [2.2.1]-bicyclic ketones; DFT calculations provide evidence for a mechanism involving torquoselective 4π-electrocyclic ring opening to a cis,trans-cycloheptadienone followed by a Nazarov-like recyclization and a 1,2-alkyl shift. Similarly, 4,6-fused cyclobutenamides undergo AlCl3-catalyzed rearrangements to [3.2.1]-bicyclic ketones through cis,trans-cyclooctadienone intermediates. The products can be further elaborated via facile cascade reactions to give complex tri- and tetracyclic molecules.
Chemistry: A European Journal | 2012
Patrick G. McGarraugh; Ryne C. Johnston; Aurora Martínez‐Muñoz; Paul Ha-Yeon Cheong; Stacey E. Brenner-Moyer
A new cascade reaction involving an iminium-catalyzed intramolecular oxa-Michael addition followed by an enamine-catalyzed intermolecular Michael addition is reported herein. This cascade reaction generates enantiopure, highly functionalized tetrahydropyrans and tetrahydrofurans in a one-pot reaction and in up to 89 % combined yield and up to 99 % ee. This cascade reaction is catalyzed by diaryl prolinol silyl ethers, which are a privileged class of catalysts. The stereochemical outcome of these cascade reactions is unprecedented. Computational studies indicate that this stereochemical outcome arises from nonclassical hydrogen-bonding interactions between the electrophile and the substrate, and from entropic considerations of preorganization. The unprecedented configurations of the cascade products, combined with the computational models, reveal for the first time that asymmetric induction by diaryl prolinol silyl ether catalysts is not always exclusively reagent controlled. The stereochemical outcome also arises from a kinetic resolution or dynamic kinetic resolution of the β-stereocenter through an enamine-catalyzed intermolecular reaction. This unprecedented organocascade reaction mechanism may be adaptable to diaryl prolinol silyl ether-catalyzed cascade reactions, in which both the iminium- and enamine-catalyzed steps are intermolecular, an underdeveloped type of cascade reaction.
Journal of the American Chemical Society | 2014
Xiao-Na Wang; Elizabeth H. Krenske; Ryne C. Johnston; K. N. Houk; Richard P. Hsung
Electrocyclic ring opening of 4,6-fused cyclobutenamides 1 under thermal conditions leads to cis,trans-cyclooctadienones 2-E,E as transient intermediates, en route to 5,5-bicyclic products 3. Theoretical calculations predict that 4,5-fused cyclobutenamides should likewise undergo thermal ring opening, giving cis,trans-cycloheptadienones, but in this case conversion to 5,4-bicyclic products is thermodynamically disfavored, and these cyclobutenamides instead rearrange to vinyl cyclopentenones.
Chemical Science | 2014
Eoin R. Gould; Daniel M. Walden; Kevin Kasten; Ryne C. Johnston; Jiufeng Wu; Alexandra M. Z. Slawin; Thomas J. L. Mustard; Brittany Johnston; Tony Davies; Paul Ha-Yeon Cheong; Andrew D. Smith
The regiodivergent O- to C- or N-carboxyl transfer of pyrazolyl carbonates is described, with DMAP giving preferential N-carboxylation and triazolinylidenes promoting selective C-carboxylation (both with up to >99 : 1 regioselectivity). An enantioselective O- to C-carboxyl variant using NHC catalysis is demonstrated (up to 92% ee), while mechanistic and DFT studies outline the pathways operative in this system and provide insight into the reasons for the observed selectivity.