Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryo Futahashi is active.

Publication


Featured researches published by Ryo Futahashi.


Genetics | 2008

yellow and ebony Are the Responsible Genes for the Larval Color Mutants of the Silkworm Bombyx mori

Ryo Futahashi; Jotaro Sato; Yan Meng; Shun Okamoto; Takaaki Daimon; Kimiko Yamamoto; Yoshitaka Suetsugu; Junko Narukawa; Hirokazu Takahashi; Yutaka Banno; Susumu Katsuma; Toru Shimada; Kazuei Mita; Haruhiko Fujiwara

Many larval color mutants have been obtained in the silkworm Bombyx mori. Mapping of melanin-synthesis genes on the Bombyx linkage map revealed that yellow and ebony genes were located near the chocolate (ch) and sooty (so) loci, respectively. In the ch mutants, body color of neonate larvae and the body markings of elder instar larvae are reddish brown instead of normal black. Mutations at the so locus produce smoky larvae and black pupae. F2 linkage analyses showed that sequence polymorphisms of yellow and ebony genes perfectly cosegregated with the ch and so mutant phenotypes, respectively. Both yellow and ebony were expressed in the epidermis during the molting period when cuticular pigmentation occurred. The spatial expression pattern of yellow transcripts coincided with the larval black markings. In the ch mutants, nonsense mutations of the yellow gene were detected, whereas large deletions of the ebony ORF were detected in the so mutants. These results indicate that yellow and ebony are the responsible genes for the ch and so loci, respectively. Our findings suggest that Yellow promotes melanization, whereas Ebony inhibits melanization in Lepidoptera and that melanin-synthesis enzymes play a critical role in the lepidopteran larval color pattern.


Development Genes and Evolution | 2005

Melanin-synthesis enzymes coregulate stage-specific larval cuticular markings in the swallowtail butterfly, Papilio xuthus

Ryo Futahashi; Haruhiko Fujiwara

Like the adult wing, butterfly larvae are unique in their coloring. However, the molecular mechanisms underlying the formation of insect larval color patterns are largely unknown. The larva of the swallowtail butterfly Papilio xuthus changes its color pattern markedly during the 4th ecdysis. We investigated its cuticular color pattern, which is thought to be composed of melanin and related pigments derived from tyrosine. We cloned three enzymes involved in the melanin-synthesis pathway in P. xuthus: tyrosine hydroxylase (TH), dopa decarboxylase (DDC), and ebony. Whole-mount in situ hybridization showed that the expression of both TH and DDC is strongly correlated with the black markings. ebony is strongly expressed only in the reddish-brown area. The expression pattern of each enzyme coincides with the cuticular color pattern of the subsequent instar. We also investigated the uptake of melanin precursors into cultured integument. Inhibition of either TH or DDC activity prevents in vitro pigmentation completely. Addition of dopamine to integuments in the presence of TH inhibitor causes overall darkening without specific markings. From these results, specific larval cuticular color patterns are regulated by stage-specific colocalization of enzymes in epidermal cells rather than by the differential uptake of melanin precursors into individual epidermal cells. Epidermal cells expressing TH and DDC, but not ebony, produce the black cuticle, and epidermal cells expressing TH, DDC, and ebony produce the reddish-brown cuticle.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Extraordinary diversity of visual opsin genes in dragonflies

Ryo Futahashi; Ryouka Kawahara-Miki; Michiyo Kinoshita; Kazutoshi Yoshitake; Shunsuke Yajima; Kentaro Arikawa; Takema Fukatsu

Significance Human color vision is tri-chromatic, with three opsins expressed in cone photoreceptors that are sensitive in the red, green, and blue region of the spectrum. As theories predict, such tri- or tetra-chromacy with three or four opsin genes is common among mammals, birds, and other animals, including insects. However, we discovered that dragonflies possess as many as 15–33 opsin genes that have evolved through dynamic gene multiplications and losses within the lineage of dragonflies. These opsin genes are differentially expressed between adult and larva, as well as between dorsal and ventral regions of adult compound eyes, which plausibly underpin the versatile behavioral and ecological adaptations of actively flying adults to aerial lifestyle and sedentary larvae to aquatic lifestyle. Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15–33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Repression of tyrosine hydroxylase is responsible for the sex-linked chocolate mutation of the silkworm, Bombyx mori

Chun Liu; Kimiko Yamamoto; Ting Cai Cheng; Keiko Kadono-Okuda; Junko Narukawa; Shiping Liu; Yu Han; Ryo Futahashi; Kurako Kidokoro; Hiroaki Noda; Isao Kobayashi; Toshiki Tamura; Akio Ohnuma; Yutaka Banno; Fang Ying Dai; Zhong Huai Xiang; Marian R. Goldsmith; Kazuei Mita; Qing You Xia

Pigmentation patterning has long interested biologists, integrating topics in ecology, development, genetics, and physiology. Wild-type neonatal larvae of the silkworm, Bombyx mori, are completely black. By contrast, the epidermis and head of larvae of the homozygous recessive sex-linked chocolate (sch) mutant are reddish brown. When incubated at 30 °C, mutants with the sch allele fail to hatch; moreover, homozygous mutants carrying the allele sch lethal (schl) do not hatch even at room temperature (25 °C). By positional cloning, we narrowed a region containing sch to 239,622 bp on chromosome 1 using 4,501 backcross (BC1) individuals. Based on expression analyses, the best sch candidate gene was shown to be tyrosine hydroxylase (BmTh). BmTh coding sequences were identical among sch, schl, and wild-type. However, in sch the ∼70-kb sequence was replaced with ∼4.6 kb of a Tc1-mariner type transposon located ∼6 kb upstream of BmTh, and in schl, a large fragment of an L1Bm retrotransposon was inserted just in front of the transcription start site of BmTh. In both cases, we observed a drastic reduction of BmTh expression. Use of RNAi with BmTh prevented pigmentation and hatching, and feeding of a tyrosine hydroxylase inhibitor also suppressed larval pigmentation in the wild-type strain, pnd+ and in a pS (black-striped) heterozygote. Feeding L-dopa to sch neonate larvae rescued the mutant phenotype from chocolate to black. Our results indicate the BmTh gene is responsible for the sch mutation, which plays an important role in melanin synthesis producing neonatal larval color.


Insect Biochemistry and Molecular Biology | 2011

Laccase2 is required for cuticular pigmentation in stinkbugs.

Ryo Futahashi; Kohjiro Tanaka; Yu Matsuura; Masahiko Tanahashi; Yoshitomo Kikuchi; Takema Fukatsu

During the maturation of insect cuticle, protein-protein and protein-chitin crosslinkages are formed by the action of diphenoloxidases. Two types of diphenoloxidases, laccases and tyrosinases, are present in the insect cuticle. In coleopteran and hymenopteran insects, laccase2 gene has been identified as encoding an enzyme principally responsible for cuticular pigmentation and hardening, whereas biological roles of laccase genes in hemimetabolous insects remain to be established. Here we identified laccase2 genes from three hemipteran stinkbugs, Riptortus pedestris (Alydidae), Nysius plebeius (Lygaeidae) and Megacopta punctatissima (Plataspidae). In R. pedestris, laccase2 gene was highly expressed in epidermal tissues prior to molting. When the gene expression was suppressed by an RNA interference technique, cuticular pigmentation after molting were blocked depending on the dose of injected double-stranded RNA targeting the laccase2 gene. Similar results were obtained for N. plebeius and M. punctatissima. In all the stinkbug species, injecting 20 ng of double-stranded RNA was sufficient to prevent the cuticular maturation. These results indicate that laccase2 gene is generally required for cuticular pigmentation in different stinkbug families, highlighting its conserved biological function across diverse insect taxa.


G3: Genes, Genomes, Genetics | 2013

Large Scale Full-Length cDNA Sequencing Reveals a Unique Genomic Landscape in a Lepidopteran Model Insect, Bombyx mori

Yoshitaka Suetsugu; Ryo Futahashi; Hiroyuki Kanamori; Keiko Kadono-Okuda; Shun-ichi Sasanuma; Junko Narukawa; Masahiro Ajimura; Akiya Jouraku; Nobukazu Namiki; Michihiko Shimomura; Hideki Sezutsu; Mizuko Osanai-Futahashi; Masataka G. Suzuki; Takaaki Daimon; Tetsuro Shinoda; Kiyoko Taniai; Kiyoshi Asaoka; Ryusuke Niwa; Shinpei Kawaoka; Susumu Katsuma; Toshiki Tamura; Hiroaki Noda; Masahiro Kasahara; Sumio Sugano; Yutaka Suzuki; Haruhiko Fujiwara; Hiroshi Kataoka; Kallare P. Arunkumar; Archana Tomar; Javaregowda Nagaraju

The establishment of a complete genomic sequence of silkworm, the model species of Lepidoptera, laid a foundation for its functional genomics. A more complete annotation of the genome will benefit functional and comparative studies and accelerate extensive industrial applications for this insect. To realize these goals, we embarked upon a large-scale full-length cDNA collection from 21 full-length cDNA libraries derived from 14 tissues of the domesticated silkworm and performed full sequencing by primer walking for 11,104 full-length cDNAs. The large average intron size was 1904 bp, resulting from a high accumulation of transposons. Using gene models predicted by GLEAN and published mRNAs, we identified 16,823 gene loci on the silkworm genome assembly. Orthology analysis of 153 species, including 11 insects, revealed that among three Lepidoptera including Monarch and Heliconius butterflies, the 403 largest silkworm-specific genes were composed mainly of protective immunity, hormone-related, and characteristic structural proteins. Analysis of testis-/ovary-specific genes revealed distinctive features of sexual dimorphism, including depletion of ovary-specific genes on the Z chromosome in contrast to an enrichment of testis-specific genes. More than 40% of genes expressed in specific tissues mapped in tissue-specific chromosomal clusters. The newly obtained FL-cDNA sequences enabled us to annotate the genome of this lepidopteran model insect more accurately, enhancing genomic and functional studies of Lepidoptera and comparative analyses with other insect orders, and yielding new insights into the evolution and organization of lepidopteran-specific genes.


Evolution & Development | 2010

Caterpillar color patterns are determined by a two-phase melanin gene prepatterning process: new evidence from tan and laccase2

Ryo Futahashi; Yutaka Banno; Haruhiko Fujiwara

SUMMARY The larval color patterns in Lepidoptera exhibit splendid diversity, and identifying the genes responsible for pigment distribution is essential to understanding color‐pattern evolution. The swallowtail butterfly, Papilio xuthus, is a good candidate for analyzing marking‐associated genes because its body markings change dramatically at the final molt. Moreover, the silkworm Bombyx mori is most suitable for identification of lab‐generated color mutants because genome information and many color mutants are available. Here, we analyzed the expression pattern of 10 melanin‐related genes in P. xuthus, and analyzed whether these genes were responsible for Bombyx larval color mutants. We found that seven genes correlated strongly with the stage‐specific larval cuticular markings of P. xuthus, suggesting that, compared with Drosophila, more genes showed marking specificity in lepidopteran larvae. We newly found that the expression of both tan and laccase2 is strongly correlated with the larval black markings in both P. xuthus and B. mori. The results of F2 linkage analysis and mutant analysis strongly suggest that tan is the responsible gene for Bombyx larval color mutant rouge, and that tan is important in emphasizing black markings of lepidopteran larvae. Detailed comparison of temporal and spatial expression patterns showed that larval cuticular markings were regulated at two different phases. Marking‐specific expression of oxidizing enzymes preceded the marking‐specific expression of melanin synthesis enzymes at mRNA level, which is the reverse of the melanin synthesis step.


Science | 2008

Juvenile hormone regulates butterfly larval pattern switches

Ryo Futahashi; Haruhiko Fujiwara

Insect color patterns can be very diverse. This variation is also seen among many larval instar stages, which can take on vastly different phenotypes. Young caterpillars of the swallowtail butterfly, Papilio xuthus, are mimics of bird droppings, whereas the fifth larval instar is camouflaged among the leaves of host plants (cryptic pattern). We find that juvenile hormone (JH) titers decrease during the fourth larval instar. Furthermore, treatment with JH analog at the beginning of the fourth instar stage resulted in reproducing the mimetic pattern instead of the usual cryptic one and likewise altered gene expression patterns to that associated with the mimetic pattern. These findings suggest that JH regulates the progressive larval pattern switch of this insect.


PLOS ONE | 2013

Gene Expression in Gut Symbiotic Organ of Stinkbug Affected by Extracellular Bacterial Symbiont

Ryo Futahashi; Kohjiro Tanaka; Masahiko Tanahashi; Naruo Nikoh; Yoshitomo Kikuchi; Bok Luel Lee; Takema Fukatsu

The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations.


Developmental and Comparative Immunology | 2014

Molting-associated suppression of symbiont population and up-regulation of antimicrobial activity in the midgut symbiotic organ of the Riptortus–Burkholderia symbiosis

Jiyeun Kate Kim; Sang Heum Han; Chan-Hee Kim; Yong Hun Jo; Ryo Futahashi; Yoshitomo Kikuchi; Takema Fukatsu; Bok Luel Lee

The majority of insects possess symbiotic bacteria. Since symbiont titers can affect host phenotypes of biological importance, host insects are expected to evolve some mechanisms for regulating symbiont population. Here we report that, in the Riptortus-Burkholderia gut symbiosis, titers of the beneficial symbiont transiently decrease at the pre-molt stages in host development. This molting-associated suppression of the symbiont population is coincident with the increase of antimicrobial activity in the symbiotic midgut, which is observed in both symbiotic and aposymbiotic insects. Two genes, pyrrhocoricin-like antimicrobial peptide and c-type lysozyme, exhibit significantly increased expression in the symbiotic midgut at the pre-molt stages. These results suggest that the molting-associated up-regulation of antimicrobial activity in the symbiotic midgut represents a physiological mechanism of the host insect to regulate symbiosis, which is presumably for defending molting insects against injury and infection and/or for allocating symbiont-derived energy and resources to host molting.

Collaboration


Dive into the Ryo Futahashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takema Fukatsu

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kazuei Mita

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masahiko Tanahashi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Naruo Nikoh

The Open University of Japan

View shared research outputs
Top Co-Authors

Avatar

Toshiki Tamura

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Yoshitomo Kikuchi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge