Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryo P. Honda is active.

Publication


Featured researches published by Ryo P. Honda.


Journal of Biological Chemistry | 2014

Acid-induced Molten Globule State of a Prion Protein CRUCIAL ROLE OF STRAND 1-HELIX 1-STRAND 2 SEGMENT

Ryo P. Honda; Keiichi Yamaguchi; Kazuo Kuwata

Background: The oligomerization mechanism of a prion protein is not fully understood. Results: We found an acid-induced molten globule state (A-state) as a pre-oligomer state, in which the Strand 1-Helix 1-Strand 2 segment was unfolded. Conclusion: The A-state formation is the initial step of the oligomerization. Significance: This work may offer a clue for understanding the prions pathogenic conversion mechanism. The conversion of a cellular prion protein (PrPC) to its pathogenic isoform (PrPSc) is a critical event in the pathogenesis of prion diseases. Pathogenic conversion is usually associated with the oligomerization process; therefore, the conformational characteristics of the pre-oligomer state may provide insights into the conversion process. Previous studies indicate that PrPC is prone to oligomer formation at low pH, but the conformation of the pre-oligomer state remains unknown. In this study, we systematically analyzed the acid-induced conformational changes of PrPC and discovered a unique acid-induced molten globule state at pH 2.0 termed the “A-state.” We characterized the structure of the A-state using far/near-UV CD, 1-anilino-8-naphthalene sulfonate fluorescence, size exclusion chromatography, and NMR. Deuterium exchange experiments with NMR detection revealed its first unique structure ever reported thus far; i.e. the Strand 1-Helix 1-Strand 2 segment at the N terminus was preferentially unfolded, whereas the Helix 2-Helix 3 segment at the C terminus remained marginally stable. This conformational change could be triggered by the protonation of Asp144, Asp147, and Glu196, followed by disruption of key salt bridges in PrPC. Moreover, the initial population of the A-state at low pH (pH 2.0–5.0) was well correlated with the rate of the β-rich oligomer formation, suggesting that the A-state is the pre-oligomer state. Thus, the specific conformation of the A-state would provide crucial insights into the mechanisms of oligomerization and further pathogenic conversion as well as facilitating the design of novel medical chaperones for treating prion diseases.


Structure | 2015

A Native-like Intermediate Serves as a Branching Point between the Folding and Aggregation Pathways of the Mouse Prion Protein

Ryo P. Honda; Ming Xu; Keiichi Yamaguchi; Heinrich Roder; Kazuo Kuwata

Transient folding intermediates and/or partially unfolded equilibrium states are thought to play a key role in the formation of protein aggregates. However, there is only indirect evidence linking accumulation of folding intermediates to aggregation, and the underlying mechanism remains to be elucidated. Here, we show that a partially unfolded state of the prion protein accumulates both as a stable equilibrium state at acidic pH (A-state) and as a late folding intermediate. With a time resolution of approximately 60 μs, we systematically studied the kinetics of folding and unfolding, starting from various initial conditions including the U-, N-, and A-states. Quantitative modeling showed that the observed kinetic data are completely consistent with a sequential four-state mechanism where the A-state is a late folding intermediate. Combined with previous evidence linking A-state accumulation to aggregation, the results indicate that this native-like state serves as a branching point between the folding and aggregation pathways.


Scientific Reports | 2017

The native state of prion protein (PrP) directly inhibits formation of PrP-amyloid fibrils in vitro

Ryo P. Honda; Kazuo Kuwata

The conversion of globular proteins into amyloid fibrils is associated with a wide variety of human diseases. One example is the prion protein (PrP), which adopts an α-helical structure in the native state but its amyloid form is implicated in the pathogenesis of prion diseases. Previous evidence has suggested that destabilization of the native state promotes amyloid formation, but the underlying mechanism remains unknown. In this study, we report that the native state of PrP serves as a potent inhibitor in the formation of PrP amyloid fibrils. By monitoring the time courses of thioflavin T fluorescence, the kinetics of amyloid formation was studied in vitro under various concentrations of pre-formed amyloid, monomer, and denaturant. Quantitative analysis of the kinetic data using various models of enzyme kinetics suggested that the native state of PrP is either an uncompetitive or noncompetitive inhibitor of amyloid formation. This study highlights the significant role of the native state in inhibiting amyloid formation, which provides new insights into the pathogenesis of misfolding diseases.


Gut Pathogens | 2017

Capsular polysaccharide inhibits adhesion of Bifidobacterium longum 105-A to enterocyte-like Caco-2 cells and phagocytosis by macrophages

Amin Tahoun; Hisayoshi Masutani; Hanem El-Sharkawy; Trudi Gillespie; Ryo P. Honda; Kazuo Kuwata; Mizuho Inagaki; Tomio Yabe; Izumi Nomura; Tohru Suzuki

BackgroundBifidobacterium longum 105-A produces markedly high amounts of capsular polysaccharides (CPS) and exopolysaccharides (EPS) that should play distinct roles in bacterial–host interactions. To identify the biological function of B. longum 105-A CPS/EPS, we carried out an informatics survey of the genome and identified the EPS-encoding genetic locus of B. longum 105-A that is responsible for the production of CPS/EPS. The role of CPS/EPS in the adaptation to gut tract environment and bacteria-gut cell interactions was investigated using the ΔcpsD mutant.ResultsA putative B. longum 105-A CPS/EPS gene cluster was shown to consist of 24 putative genes encoding a priming glycosyltransferase (cpsD), 7 glycosyltransferases, 4 CPS/EPS synthesis machinery proteins, and 3 dTDP-L-rhamnose synthesis enzymes. These enzymes should form a complex system that is involved in the biogenesis of CPS and/or EPS. To confirm this, we constructed a knockout mutant (ΔcpsD) by a double cross-over homologous recombination. Compared to wild-type, the ∆cpsD mutant showed a similar growth rate. However, it showed quicker sedimentation and formation of cell clusters in liquid culture. EPS was secreted by the ∆cpsD mutant, but had altered monosaccharide composition and molecular weight. Comparison of the morphology of B. longum 105-A wild-type and ∆cpsD by negative staining in light and electron microscopy revealed that the formation of fimbriae is drastically enhanced in the ∆cpsD mutant while the B. longum 105-A wild-type was coated by a thick capsule. The fimbriae expression in the ∆cpsD was closely associated with the disappearance of the CPS layer. The wild-type showed low pH tolerance, adaptation, and bile salt tolerance, but the ∆cpsD mutant had lost this survivability in gastric and duodenal environments. The ∆cpsD mutant was extensively able to bind to the human colon carcinoma Caco-2 cell line and was phagocytosed by murine macrophage RAW 264.7, whereas the wild-type did not bind to epithelial cells and totally resisted internalization by macrophages.ConclusionsOur results suggest that CPS/EPS production and fimbriae formation are negatively correlated and play key roles in the survival, attachment, and colonization of B. longum 105-A in the gut.


Protein Science | 2016

Effects of ligand binding on the stability of aldo-keto reductases: Implications for stabilizer or destabilizer chaperones.

Aurangazeb Kabir; Ryo P. Honda; Yuji O. Kamatari; Satoshi Endo; Mayuko Fukuoka; Kazuo Kuwata

Ligands such as enzyme inhibitors stabilize the native conformation of a protein upon binding to the native state, but some compounds destabilize the native conformation upon binding to the non‐native state. The former ligands are termed “stabilizer chaperones” and the latter ones “destabilizer chaperones.” Because the stabilization effects are essential for the medical chaperone (MC) hypothesis, here we have formulated a thermodynamic system consisting of a ligand and a protein in its native‐ and non‐native state. Using the differential scanning fluorimetry and the circular dichroism varying the urea concentration and temperature, we found that when the coenzyme NADP+ was absent, inhibitors such as isolithocholic acid stabilized the aldo–keto reductase AKR1A1 upon binding, which showed actually the three‐state folding, but destabilized AKR1B10. In contrast, in the presence of NADP+, they destabilized AKR1A1 and stabilized AKR1B10. To explain these phenomena, we decomposed the free energy of stabilization (ΔΔG) into its enthalpy (ΔΔH) and entropy (ΔΔS) components. Then we found that in a relatively unstable protein showing the three‐state folding, native conformation was stabilized by the negative ΔΔH in association with the negative ΔΔS, suggesting that the stabilizer chaperon decreases the conformational fluctuation of the target protein or increase its hydration. However, in other cases, ΔΔG was essentially determined by the delicate balance between ΔΔH and ΔΔS. The proposed thermodynamic formalism is applicable to the system including multiple ligands with allosteric interactions. These findings would promote the development of screening strategies for MCs to regulate the target conformations.


The FASEB Journal | 2018

Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils

Ryo P. Honda; Kazuo Kuwata

Amyloid fibrils are filamentous protein aggregates associated with the pathogenesis of a wide variety of human diseases. The formation of such aggregates typically follows nucleation‐dependent kinetics, wherein the assembly and structural conversion of amyloidogenic proteins into oligomeric aggregates (nuclei) is the ratelimiting step of the overall reaction. In this study, we sought to gain structural insights into the oligomeric nuclei of the human prion protein (PrP) by preparing a series of deletion mutants lacking 14–44 of the C‐terminal 107 residues of PrP and examined the kinetics and thermodynamics of these mutants in amyloid formation. An analysis of the experimental data using the concepts of the Ф‐value analysis indicated that the helix 2 region (residues 168–196) acquires an amyloid‐like β‐sheet during nucleation, whereas the other regions preserves a relatively disordered structure in the nuclei. This finding suggests that the helix 2 region serves as the nucleation site for the assemblyof amyloid fibrils.—Honda, R., Kuwata, K. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils. FASEB J. 32, 3641–3652 (2018). www.fasebj.org


Journal of Biochemistry | 2018

Acceleration of nucleation of prion protein during continuous ultrasonication

Keiichi Yamaguchi; Ryo P. Honda; Abdelazim Elsayed Elhelaly; Kazuo Kuwata

Although pulsatile irradiation of ultrasonication is frequently used for generating amyloid fibrils in vitro, the potential for inducing amyloid fibrillation of proteins during continuous ultrasonication is unknown. In this study, we implemented a continuous irradiation system and measured far-ultraviolet circular dichroism in a real-time manner. During the continuous ultrasonication, the conformation of full-length mouse prion protein (mPrP) was rapidly altered without a lag time and electron microscopy revealed that distorted fibrils, β-oligomers and amorphous aggregates were formed at pH 2.2, 4.0 and 9.1, respectively. Similarly, hen egg white lysozyme formed distorted fibrils and small and large amorphous aggregates at pH 2.2 and 7.1 and 11.9, respectively, without a lag time. The concentration dependencies of the initial rates were different between the two systems. The aggregate formation of mPrP followed a first-order reaction, whereas that of lysozyme followed the zeroth-order reaction. Importantly, the reactions were immediately stopped by switching off ultrasonication, and restarted instantaneously when ultrasonication was restarted. Thus, the continuous ultrasonication significantly accelerates the nucleations of mPrP and lysozyme aggregates by the interaction between monomer and cavitation bubble. These cavitation bubbles may act as catalysts that decrease the activation free energy for nucleation, which is low in mPrP and high in lysozyme.


Prion | 2018

Poly-L-histidine inhibits prion propagation in a prion-infected cell line

Ryo P. Honda; Keiichi Yamaguchi; Abdelazim Elsayed Elhelaly; Mitsuhiko Fuji; Kazuo Kuwata

ABSTRACT Transmissible spongiform encephalopathies (TSEs) are a group of lethal neurodegenerative diseases involving the structural conversion of cellular prion protein (PrPC) into the pathogenic isoform (PrPSc) for which no effective treatment is currently available. Previous studies have implicated that a polymeric molecule with a repeating unit, such as pentosane polysulfate and polyamidoamide dendrimers, exhibits a potent anti-prion activity, suggesting that poly-(amino acid)s could be a candidate molecule for inhibiting prion propagation. Here, by screening a series of poly-(amino acid)s in a prion-infected neuroblastoma cell line (GTFK), we identified poly-L-His as a novel anti-prion compound with an IC50 value of 1.8 µg/mL (0.18 µM). This potent anti-prion activity was specific to a high-molecular-weight poly-L-His and absent in monomeric histidine or low-molecular-weight poly-L-His. Solution NMR data indicated that poly-L-His directly binds to the loop region connecting Helix 2 and Helix 3 of PrPC and sterically blocks the structural conversion toward PrPSc. Poly-L-His, however, did not inhibit prion propagation in a prion-infected mouse when administered intraperitoneally, suggesting that the penetration of blood-brain barrier and/or the chemical stability of this polypeptide must be addressed before its application in vivo. Taken together, this study revealed the potential use of poly-L-His as a novel treatment against TSEs. (203 words)


Biochemical and Biophysical Research Communications | 2018

A valine-to-lysine substitution at position 210 induces structural conversion of prion protein into a β-sheet rich oligomer

Kyosuke Kakuda; Keiichi Yamaguchi; Kazuo Kuwata; Ryo P. Honda

Prion diseases are fatal neurodegenerative diseases associated with structural conversion of α-helical prion protein (PrP) into its β-sheet rich isoform (PrPSc). Previous genetic analyses have indicated that several amino acid residues involved in the hydrophobic core of PrP (such as V180, F198, and V210) play a critical role in the development of prion diseases. To understand how these hydrophobic residues would contribute to the α-to-β conversion process of PrP, we substituted the V210 residue with bulkier (V210F, V210I, and V210L), smaller (V210A), and charged amino acids (V210K) and characterized its effects. Interestingly, although most of the mutations had little or no effect on the biochemical properties of PrP, the V210K mutation induced structural conversion of PrP into a β-structure. The β-inducing effect was prominent and observed even under a physiological condition (i.e., in the absence of denaturant, acidic pH, reducing agent, and high temperature) in contrast to the disease-associated mutations in the PrP gene. We also examined structural features of V210K PrP using guanidine-hydrochloride unfolding, dynamic light scattering, 8-anilino-1-naphthalene sulfonate fluorescence, and electron microscopy, and revealed that V210K PrP assembles into a non-fibrillar β-rich oligomer. Thus, the α-to-β conversion can be induced by introduction of a charged residue into the hydrophobic core, which provide novel insight into the structural dynamics of PrP.


Angewandte Chemie | 2018

Amyloid‐β Peptide Induces Prion Protein Amyloid Formation: Evidence for Its Widespread Amyloidogenic Effect

Ryo P. Honda

Transmissible spongiform encephalopathy is associated with misfolding of prion protein (PrP) into an amyloid β-rich aggregate. Previous studies have indicated that PrP interacts with Alzheimers disease amyloid-β peptide (Aβ), but it remains elusive how this interaction impacts on the misfolding of PrP. This study presents the first in vitro evidence that Aβ induces PrP-amyloid formation at submicromolar concentrations. Interestingly, systematic mutagenesis of PrP revealed that Aβ requires no specific amino acid sequences in PrP, and induces the misfolding of other unrelated proteins (insulin and lysozyme) into amyloid fibrils in a manner analogous to PrP. This unanticipated nonspecific amyloidogenic effect of Aβ indicates that this peptide might be involved in widespread protein aggregation, regardless of the amino acid sequences of target proteins, and exacerbate the pathology of many neurodegenerative diseases.

Collaboration


Dive into the Ryo P. Honda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Endo

Gifu Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Ikari

Gifu Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge