Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryohei Katayama is active.

Publication


Featured researches published by Ryohei Katayama.


Journal of Clinical Oncology | 2012

ROS1 Rearrangements Define a Unique Molecular Class of Lung Cancers

Kristin Bergethon; Alice T. Shaw; Sai-Hong Ignatius Ou; Ryohei Katayama; Christine M. Lovly; Nerina T. McDonald; Pierre P. Massion; Christina Siwak-Tapp; Adriana Gonzalez; Rong Fang; Eugene J. Mark; Julie M. Batten; Haiquan Chen; Keith D. Wilner; Eunice L. Kwak; Jeffrey W. Clark; David P. Carbone; Hongbin Ji; Jeffrey A. Engelman; Mari Mino-Kenudson; William Pao; A. John Iafrate

PURPOSE Chromosomal rearrangements involving the ROS1 receptor tyrosine kinase gene have recently been described in a subset of non-small-cell lung cancers (NSCLCs). Because little is known about these tumors, we examined the clinical characteristics and treatment outcomes of patients with NSCLC with ROS1 rearrangement. PATIENTS AND METHODS Using a ROS1 fluorescent in situ hybridization (FISH) assay, we screened 1,073 patients with NSCLC and correlated ROS1 rearrangement status with clinical characteristics, overall survival, and when available, ALK rearrangement status. In vitro studies assessed the responsiveness of cells with ROS1 rearrangement to the tyrosine kinase inhibitor crizotinib. The clinical response of one patient with ROS1-rearranged NSCLC to crizotinib was investigated as part of an expanded phase I cohort. RESULTS Of 1,073 tumors screened, 18 (1.7%) were ROS1 rearranged by FISH, and 31 (2.9%) were ALK rearranged. Compared with the ROS1-negative group, patients with ROS1 rearrangements were significantly younger and more likely to be never-smokers (each P < .001). All of the ROS1-positive tumors were adenocarcinomas, with a tendency toward higher grade. ROS1-positive and -negative groups showed no difference in overall survival. The HCC78 ROS1-rearranged NSCLC cell line and 293 cells transfected with CD74-ROS1 showed evidence of sensitivity to crizotinib. The patient treated with crizotinib showed tumor shrinkage, with a near complete response. CONCLUSION ROS1 rearrangement defines a molecular subset of NSCLC with distinct clinical characteristics that are similar to those observed in patients with ALK-rearranged NSCLC. Crizotinib shows in vitro activity and early evidence of clinical activity in ROS1-rearranged NSCLC.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK

Ryohei Katayama; Tahsin M. Khan; Cyril H. Benes; Eugene Lifshits; Hiromichi Ebi; Victor M. Rivera; Shakespeare Wc; Anthony John Iafrate; J. A. Engelman; Alice T. Shaw

The echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion oncogene represents a molecular target in a small subset of non-small cell lung cancers (NSCLCs). This fusion leads to constitutive ALK activation with potent transforming activity. In a pivotal phase 1 clinical trial, the ALK tyrosine kinase inhibitor (TKI) crizotinib (PF-02341066) demonstrated impressive antitumor activity in the majority of patients with NSCLC harboring ALK fusions. However, despite these remarkable initial responses, cancers eventually develop resistance to crizotinib, usually within 1 y, thereby limiting the potential clinical benefit. To determine how cancers acquire resistance to ALK inhibitors, we established a model of acquired resistance to crizotinib by exposing a highly sensitive EML4-ALK–positive NSCLC cell line to increasing doses of crizotinib until resistance emerged. We found that cells resistant to intermediate doses of crizotinib developed amplification of the EML4-ALK gene. Cells resistant to higher doses (1 μM) also developed a gatekeeper mutation, L1196M, within the kinase domain, rendering EML4-ALK insensitive to crizotinib. This gatekeeper mutation was readily detected using a unique and highly sensitive allele-specific PCR assay. Although crizotinib was ineffectual against EML4-ALK harboring the gatekeeper mutation, we observed that two structurally different ALK inhibitors, NVP-TAE684 and AP26113, were highly active against the resistant cancer cells in vitro and in vivo. Furthermore, these resistant cells remained highly sensitive to the Hsp90 inhibitor 17-AAG. Thus, we have developed a model of acquired resistance to ALK inhibitors and have shown that second-generation ALK TKIs or Hsp90 inhibitors are effective in treating crizotinib-resistant tumors harboring secondary gatekeeper mutations.


Cancer Discovery | 2014

The ALK Inhibitor Ceritinib Overcomes Crizotinib Resistance in Non–Small Cell Lung Cancer

Luc Friboulet; Nanxin Li; Ryohei Katayama; Christian C. Lee; Justin F. Gainor; Adam S. Crystal; Pierre-Yves Michellys; Mark M. Awad; Noriko Yanagitani; Sungjoon Kim; AnneMarie C. Pferdekamper; Jie Li; Shailaja Kasibhatla; Frank Sun; Xiuying Sun; Su Hua; Peter McNamara; Sidra Mahmood; Elizabeth L. Lockerman; Naoya Fujita; Makoto Nishio; Jennifer L. Harris; Alice T. Shaw; Jeffrey A. Engelman

UNLABELLED Non-small cell lung cancers (NSCLC) harboring anaplastic lymphoma kinase (ALK) gene rearrangements invariably develop resistance to the ALK tyrosine kinase inhibitor (TKI) crizotinib. Herein, we report the first preclinical evaluation of the next-generation ALK TKI, ceritinib (LDK378), in the setting of crizotinib resistance. An interrogation of in vitro and in vivo models of acquired resistance to crizotinib, including cell lines established from biopsies of patients with crizotinib-resistant NSCLC, revealed that ceritinib potently overcomes crizotinib-resistant mutations. In particular, ceritinib effectively inhibits ALK harboring L1196M, G1269A, I1171T, and S1206Y mutations, and a cocrystal structure of ceritinib bound to ALK provides structural bases for this increased potency. However, we observed that ceritinib did not overcome two crizotinib-resistant ALK mutations, G1202R and F1174C, and one of these mutations was identified in 5 of 11 biopsies from patients with acquired resistance to ceritinib. Altogether, our results demonstrate that ceritinib can overcome crizotinib resistance, consistent with clinical data showing marked efficacy of ceritinib in patients with crizotinib-resistant disease. SIGNIFICANCE The second-generation ALK inhibitor ceritinib can overcome several crizotinib-resistant mutations and is potent against several in vitro and in vivo laboratory models of acquired resistance to crizotinib. These findings provide the molecular basis for the marked clinical activity of ceritinib in patients with ALK-positive NSCLC with crizotinib-resistant disease. Cancer Discov; 4(6); 662-73. ©2014 AACR. See related commentary by Ramalingam and Khuri, p. 634 This article is highlighted in the In This Issue feature, p. 621.


Science | 2014

Patient-derived models of acquired resistance can identify effective drug combinations for cancer

Adam S. Crystal; Alice T. Shaw; Lecia V. Sequist; Luc Friboulet; Matthew J. Niederst; Elizabeth L. Lockerman; Rosa L. Frias; Justin F. Gainor; Arnaud Amzallag; Patricia Greninger; Dana Lee; Anuj Kalsy; Maria Gomez-Caraballo; Leila Elamine; Emily Howe; Wooyoung Hur; Eugene Lifshits; Hayley Robinson; Ryohei Katayama; Anthony C. Faber; Mark M. Awad; Sridhar Ramaswamy; Mari Mino-Kenudson; A. John Iafrate; Cyril H. Benes; Jeffrey A. Engelman

Targeted cancer therapies have produced substantial clinical responses, but most tumors develop resistance to these drugs. Here, we describe a pharmacogenomic platform that facilitates rapid discovery of drug combinations that can overcome resistance. We established cell culture models derived from biopsy samples of lung cancer patients whose disease had progressed while on treatment with epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors and then subjected these cells to genetic analyses and a pharmacological screen. Multiple effective drug combinations were identified. For example, the combination of ALK and MAPK kinase (MEK) inhibitors was active in an ALK-positive resistant tumor that had developed a MAP2K1 activating mutation, and the combination of EGFR and fibroblast growth factor receptor (FGFR) inhibitors was active in an EGFR mutant resistant cancer with a mutation in FGFR3. Combined ALK and SRC (pp60c-src) inhibition was effective in several ALK-driven patient-derived models, a result not predicted by genetic analysis alone. With further refinements, this strategy could help direct therapeutic choices for individual patients. Secondary chemotherapies can be developed by screening drug-resistant cells from individual cancer patients. Drug resistance, up close and personal Cancer therapies that target specific genetic mutations driving tumor growth have shown promising results in patients; however, the response is often short-lived because the tumors acquire new mutations that render them resistant to these therapies. Complicating matters, the mechanism of resistance can vary from patient to patient. To identify drugs most likely to be effective against resistant tumors, Crystal et al. established cell lines from the tumors of individual patients after resistance occurred and performed a drug screen and genetic analysis on the cultured cells. This strategy successfully identified drug combinations that halted the growth of resistant tumor cells both in culture and in mice. In the future, pharmacological profiling of patient-derived cells could be an efficient way to direct therapeutic choices for individual cancer patients. Science, this issue p. 1480


Journal of Clinical Oncology | 2010

Activity of IPI-504, a Novel Heat-Shock Protein 90 Inhibitor, in Patients With Molecularly Defined Non–Small-Cell Lung Cancer

Lecia V. Sequist; Scott N. Gettinger; Neil Senzer; Renato Martins; Pasi A. Jänne; Rogerio Lilenbaum; Jhanelle E. Gray; A. John Iafrate; Ryohei Katayama; Nafeeza Hafeez; Jennifer Sweeney; John Walker; Christian Fritz; Robert W. Ross; David Grayzel; Jeffrey A. Engelman; Darrell R. Borger; Guillermo Paez; Ronald B. Natale

PURPOSE IPI-504 is a novel, water-soluble, potent inhibitor of heat-shock protein 90 (Hsp90). Its potential anticancer activity has been validated in preclinical in vitro and in vivo models. We studied the activity of IPI-504 after epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy in patients with advanced, molecularly defined non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS Patients with advanced NSCLC, prior treatment with EGFR TKIs, and tumor tissue available for molecular genotyping were enrolled in this prospective, nonrandomized, multicenter, phase II study of IPI-504 monotherapy. The primary outcome was objective response rate (ORR). Secondary aims included safety, progression-free survival (PFS), and analysis of activity by molecular subtypes. RESULTS Seventy-six patients were enrolled between December 2007 and May 2009 from 10 United States cancer centers. An ORR of 7% (five of 76) was observed in the overall study population, 10% (four of 40) in patients who were EGFR wild-type, and 4% (one of 28) in those with EGFR mutations. Although both EGFR groups were below the target ORR of 20%, among the three patients with an ALK gene rearrangement, two had partial responses and the third had prolonged stable disease (7.2 months, 24% reduction in tumor size). The most common adverse events included grades 1 and 2 fatigue, nausea, and diarrhea. Grade 3 or higher liver function abnormalities were observed in nine patients (11.8%). CONCLUSION IPI-504 has clinical activity in patients with NSCLC, particularly among patients with ALK rearrangements.


Clinical Cancer Research | 2013

ALK Rearrangements Are Mutually Exclusive with Mutations in EGFR or KRAS: An Analysis of 1,683 Patients with Non–Small Cell Lung Cancer

Justin F. Gainor; Anna M. Varghese; Sai-Hong Ignatius Ou; Sheheryar Kabraji; Mark M. Awad; Ryohei Katayama; Amanda C. Pawlak; Mari Mino-Kenudson; Beow Y. Yeap; Gregory J. Riely; Anthony John Iafrate; Maria E. Arcila; Marc Ladanyi; J. A. Engelman; Dora Dias-Santagata; Alice T. Shaw

Purpose: Anaplastic lymphoma kinase (ALK) gene rearrangements define a distinct molecular subset of non–small cell lung cancer (NSCLC). Recently, several case reports and small series have reported that ALK rearrangements can overlap with other oncogenic drivers in NSCLC in crizotinib-naïve and crizotinib-resistant cancers. Experimental Design: We reviewed clinical genotyping data from 1,683 patients with NSCLC and investigated the prevalence of concomitant EGFR or KRAS mutations among patients with ALK-positive NSCLC. We also examined biopsy specimens from 34 patients with ALK-positive NSCLC after the development of resistance to crizotinib. Results: Screening identified 301 (17.8%) EGFR mutations, 465 (27.6%) KRAS mutations, and 75 (4.4%) ALK rearrangements. EGFR mutations and ALK rearrangements were mutually exclusive. Four patients with KRAS mutations were found to have abnormal ALK FISH patterns, most commonly involving isolated 5′ green probes. Sufficient tissue was available for confirmatory ALK immunohistochemistry in 3 cases, all of which were negative for ALK expression. Among patients with ALK-positive NSCLC who acquired resistance to crizotinib, repeat biopsy specimens were ALK FISH positive in 29 of 29 (100%) cases. Secondary mutations in the ALK kinase domain and ALK gene amplification were observed in 7 of 34 (20.6%) and 3 of 29 (10.3%) cases, respectively. No EGFR or KRAS mutations were identified among any of the 25 crizotinib-resistant, ALK-positive patients with sufficient tissue for testing. Conclusions: Functional ALK rearrangements were mutually exclusive with EGFR and KRAS mutations in a large Western patient population. This lack of overlap was also observed in ALK-positive cancers with acquired resistance to crizotinib. Clin Cancer Res; 19(15); 4273–81. ©2013 AACR.


The New England Journal of Medicine | 2013

Acquired Resistance to Crizotinib from a Mutation in CD74–ROS1

Mark M. Awad; Ryohei Katayama; Michele McTigue; Wei Liu; Ya-Li Deng; Alexei Brooun; Luc Friboulet; Donghui Huang; Matthew D. Falk; Sergei Timofeevski; Keith D. Wilner; Elizabeth L. Lockerman; Tahsin M. Khan; Sidra Mahmood; Justin F. Gainor; Subba R. Digumarthy; James R. Stone; Mari Mino-Kenudson; James G. Christensen; A. John Iafrate; Jeffrey A. Engelman; Alice T. Shaw

Crizotinib, an inhibitor of anaplastic lymphoma kinase (ALK), has also recently shown efficacy in the treatment of lung cancers with ROS1 translocations. Resistance to crizotinib developed in a patient with metastatic lung adenocarcinoma harboring a CD74-ROS1 rearrangement who had initially shown a dramatic response to treatment. We performed a biopsy of a resistant tumor and identified an acquired mutation leading to a glycine-to-arginine substitution at codon 2032 in the ROS1 kinase domain. Although this mutation does not lie at the gatekeeper residue, it confers resistance to ROS1 kinase inhibition through steric interference with drug binding. The same resistance mutation was observed at all the metastatic sites that were examined at autopsy, suggesting that this mutation was an early event in the clonal evolution of resistance. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT00585195.).


Cancer Research | 2008

Pim Kinases Promote Cell Cycle Progression by Phosphorylating and Down-regulating p27Kip1 at the Transcriptional and Posttranscriptional Levels

Daisuke Morishita; Ryohei Katayama; Kazuhisa Sekimizu; Takashi Tsuruo; Naoya Fujita

The serine/threonine kinase Pim is known to promote cell cycle progression and to inhibit apoptosis leading to tumorigenesis. However, the precise mechanisms remain unclear. We show, herein, that all the Pim family members (Pim1, Pim2, and Pim3) bind to and directly phosphorylate the cyclin-dependent kinase inhibitor p27(Kip1) at threonine-157 and threonine-198 residues in cells and in vitro. The Pim-mediated phosphorylation induced p27(Kip1) binding to 14-3-3 protein, resulting in its nuclear export and proteasome-dependent degradation. Ectopic expression of Pim kinases overcome the G(1) arrest mediated by wild-type p27(Kip1) but not by phosphorylation-resistant T157A-p27(Kip1) or T198A-p27(Kip1). In addition to the posttranslational regulations, p27(Kip1) promoter assay revealed that Pim kinases also had the ability to suppress p27(Kip1) transcription. Pim-mediated phosphorylation and inactivation of forkhead transcription factors, FoxO1a and FoxO3a, was involved in the transcriptional repression of the p27(Kip1) gene. In contrast, inhibition of Pim signaling by expressing the dominant-negative form of Pim1 increased nuclear p27(Kip1) level and attenuated cell proliferation. Because the CDK inhibitor p27(Kip1) plays a crucial role in tumor suppression by inhibiting abnormal cell cycle progression, Pim kinases promote cell cycle progression and tumorigenesis by down-regulating p27(Kip1) expression at both transcriptional and posttranslational levels.


The New England Journal of Medicine | 2016

Resensitization to Crizotinib by the Lorlatinib Alk Resistance Mutation L1198F.

Alice T. Shaw; Luc Friboulet; Ignaty Leshchiner; Justin F. Gainor; Bergqvist S; Alexei Brooun; Benjamin J. Burke; Ya-Li Deng; Wei Liu; Leila Dardaei; Rosa L. Frias; Katherine Schultz; Jennifer A. Logan; Leonard P. James; Tod Smeal; Sergei Timofeevski; Ryohei Katayama; Anthony John Iafrate; Long P. Le; Michele McTigue; Gad Getz; Ted W. Johnson; J. A. Engelman

In a patient who had metastatic anaplastic lymphoma kinase (ALK)-rearranged lung cancer, resistance to crizotinib developed because of a mutation in the ALK kinase domain. This mutation is predicted to result in a substitution of cysteine by tyrosine at amino acid residue 1156 (C1156Y). Her tumor did not respond to a second-generation ALK inhibitor, but it did respond to lorlatinib (PF-06463922), a third-generation inhibitor. When her tumor relapsed, sequencing of the resistant tumor revealed an ALK L1198F mutation in addition to the C1156Y mutation. The L1198F substitution confers resistance to lorlatinib through steric interference with drug binding. However, L1198F paradoxically enhances binding to crizotinib, negating the effect of C1156Y and resensitizing resistant cancers to crizotinib. The patient received crizotinib again, and her cancer-related symptoms and liver failure resolved. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT01970865.).


Cancer Discovery | 2016

Molecular Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in ALK-Rearranged Lung Cancer

Justin F. Gainor; Leila Dardaei; Satoshi Yoda; Luc Friboulet; Ignaty Leshchiner; Ryohei Katayama; Ibiayi Dagogo-Jack; Shirish M. Gadgeel; Katherine Schultz; Manrose Singh; Emily Chin; Melissa Parks; Dana Lee; Richard H. DiCecca; Elizabeth L. Lockerman; Tiffany Huynh; Jennifer A. Logan; Lauren L. Ritterhouse; Long P. Le; Ashok Muniappan; Subba R. Digumarthy; Colleen L. Channick; Colleen Keyes; Gad Getz; Dora Dias-Santagata; Rebecca S. Heist; Jochen K. Lennerz; Lecia V. Sequist; Cyril H. Benes; A. John Iafrate

Advanced, anaplastic lymphoma kinase (ALK)-positive lung cancer is currently treated with the first-generation ALK inhibitor crizotinib followed by more potent, second-generation ALK inhibitors (e.g., ceritinib, alectinib) upon progression. Second-generation inhibitors are generally effective even in the absence of crizotinib-resistant ALK mutations, likely reflecting incomplete inhibition of ALK by crizotinib in many cases. Herein, we analyzed 103 repeat biopsies from ALK-positive patients progressing on various ALK inhibitors. We find that each ALK inhibitor is associated with a distinct spectrum of ALK resistance mutations and that the frequency of one mutation - ALK G1202R - increases significantly after treatment with second-generation agents. To investigate strategies to overcome resistance to second-generation ALK inhibitors, we examine the activity of the third-generation ALK inhibitor lorlatinib in a series of ceritinib-resistant, patient-derived cell lines, and observe that the presence of ALK resistance mutations is highly predictive for sensitivity to lorlatinib, whereas those cell lines without ALK mutations are resistant.

Collaboration


Dive into the Ryohei Katayama's collaboration.

Top Co-Authors

Avatar

Naoya Fujita

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Makoto Nishio

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sumie Koike

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noriko Yanagitani

Japanese Foundation for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge