Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryoichi Arita is active.

Publication


Featured researches published by Ryoichi Arita.


Diabetes | 2009

Rho Kinase Inhibition by Fasudil Ameliorates Diabetes-Induced Microvascular Damage

Ryoichi Arita; Yasuaki Hata; Shintaro Nakao; Takeshi Kita; Muneki Miura; Shuhei Kawahara; Souska Zandi; L. Almulki; F. Tayyari; Hiroaki Shimokawa; Ali Hafezi-Moghadam; Tatsuro Ishibashi

OBJECTIVE—Leukocyte adhesion in retinal microvasuculature substantially contributes to diabetic retinopathy. Involvement of the Rho/Rho kinase (ROCK) pathway in diabetic microvasculopathy and therapeutic potential of fasudil, a selective ROCK inhibitor, are investigated. RESEARCH DESIGN AND METHODS—Localization of RhoA/ROCK and Rho activity were examined in retinal tissues of rats. Impact of intravitreal fasudil administration on retinal endothelial nitric oxide synthase (eNOS) and myosin phosphatase target protein (MYPT)-1 phosphorylation, intercellular adhesion molecule-1 (ICAM-1) expression, leukocyte adhesion, and endothelial damage in rat eyes were investigated. Adhesion of neutrophils from diabetic retinopathy patients or nondiabetic control subjects to cultured microvascular endothelial cells was quantified. The potential of fasudil for endothelial protection was investigated by measuring the number of adherent neutrophils and terminal transferase-mediated dUTP nick-end labeling–positive endothelial cells. RESULTS—RhoA and ROCK colocalized predominantly in retinal microvessels. Significant Rho activation was observed in retinas of diabetic rats. Intravitreal fasudil significantly increased eNOS phosphorylation, whereas it reduced MYPT-1 phosphorylation, ICAM-1 expression, leukocyte adhesion, and the number of damaged endothelium in retinas of diabetic rats. Neutrophils from diabetic retinopathy patients showed significantly higher adhesion to cultured endothelium and caused endothelial apoptosis, which was significantly reduced by fasudil. Blockade of the Fas-FasL interaction prevented endothelial apoptosis. The protective effect of fasudil on endothelial apoptosis was significantly reversed by Nω-nitro-l-arginine methyl ester, a NOS inhibitor, whereas neutrophil adhesion remained unaffected. CONCLUSIONS—The Rho/ROCK pathway plays a critical role in diabetic retinal microvasculopathy. Fasudil protects the vascular endothelium by inhibiting neutrophil adhesion and reducing neutrophil-induced endothelial injury. ROCK inhibition may become a new strategy in the management of diabetic retinopathy, especially in its early stages.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Role of TGF-β in proliferative vitreoretinal diseases and ROCK as a therapeutic target

Takeshi Kita; Yasuaki Hata; Ryoichi Arita; Shuhei Kawahara; Muneki Miura; Shintaro Nakao; Yasutaka Mochizuki; Hiroshi Enaida; Yoshinobu Goto; Hiroaki Shimokawa; Ali Hafezi-Moghadam; Tatsuro Ishibashi

Cicatricial contraction of preretinal fibrous membrane is a cause of severe vision loss in proliferative vitreoretinal diseases such as proliferative diabetic retinopathy (PDR) and proliferative vitreoretinopathy (PVR). TGF-β is overexpressed in the vitreous of patients with proliferative vitreoretinal diseases and is also detectable in the contractile membranes. Therefore, TGF-β is presumed to contribute to the cicatricial contraction of the membranes, however, the underlying mechanisms and TGF-βs importance among various other factors remain to be elucidated. Vitreous samples from PDR or PVR patients caused significantly larger contraction of hyalocyte-containing collagen gels, compared with nonproliferative controls. The contractile effect was strongly correlated with the vitreal concentration of activated TGF-β2 (r = 0.82, P < 0.0001). PDR or PVR vitreous promoted expression of α-smooth muscle actin (α-SMA) and phosphorylation of myosin light chain (MLC), a downstream mediator of Rho-kinase (ROCK), both of which were dramatically but incompletely suppressed by TGF-β blockade. In contrast, fasudil, a potent and selective ROCK inhibitor, almost completely blocked the vitreous-induced MLC phosphorylation and collagen gel contraction. Fasudil disrupted α-SMA organization, but it did not affect its vitreal expression. In vivo, fasudil significantly inhibited the progression of experimental PVR in rabbit eyes without affecting the viability of retinal cells by electroretinographic and histological analyses. These results elucidate the critical role of TGF-β in mediating cicatricial contraction in proliferative vitreoretinal diseases. ROCK, a key downstream mediator of TGF-β and other factors might become a unique therapeutic target in the treatment of proliferative vitreoretinal diseases.


British Journal of Ophthalmology | 2009

Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction

Ri-ichiro Kohno; Yasuaki Hata; Shuhei Kawahara; Takeshi Kita; Ryoichi Arita; Yasutaka Mochizuki; Lloyd Paul Aiello; Tatsuro Ishibashi

Aim: To address the cellular components and the contractile mechanisms of the idiopathic epiretinal membrane (ERM). Methods: Ten surgically removed ERMs were fixed in 4% paraformaldehyde and analysed by whole-mount immunohistochemistry with anti-glial fibrillar acidic protein (GFAP) and alpha smooth-muscle actin (αSMA) antibodies. Type I collagen gel contraction assay, an established wound-healing assay in vitro, was performed using cultured bovine hyalocytes or normal human astrocytes (NHA) to evaluate the contractile property of the cells in the presence of tissue growth factor (TGF)-β2. The expression of αSMA was also analysed by western blot analysis to examine myofibroblastic transdifferentiation of the cells. Vitreous-induced collagen gel contraction was also evaluated. Results: All membranes were composed of αSMA immunopositive cells in contracted foci and GFAP immunopositive cells in the periphery. No apparent double positive cells were observed in any membranes examined. Cultured hyalocytes showed overexpression of αSMA and hypercontraction of collagen gels in response to TGF-β2, while glial cells showed marginal change. The vitreous from ERM patients also caused overexpression of αSMA and hypercontraction of the gels embedding hyalocytes, which were almost completely inhibited in the presence of anti-TGF-β2 neutralising antibody. Conclusions: Hyalocytes might be one of the critical components of ERM mediating its contractile property through the effect of TGF-β2 in the vitreous fluid.


Cell Reports | 2015

ROCK-Isoform-Specific Polarization of Macrophages Associated with Age-Related Macular Degeneration

Souska Zandi; Shintaro Nakao; Kwang Hoon Chun; Paolo Fiorina; Dawei Sun; Ryoichi Arita; Ming Zhao; Enoch Kim; Olivier Schueller; Stewart Campbell; Mahdi Taher; Mark I. Melhorn; Alexander Schering; Francesca Gatti; Sara Tezza; Fang Xie; Andrea Vergani; Shigeo Yoshida; Keijiro Ishikawa; Muneo Yamaguchi; Fumiyuki Sasaki; Ruth Schmidt-Ullrich; Yasuaki Hata; Hiroshi Enaida; Mitsuko Yuzawa; Takehiko Yokomizo; Young-Bum Kim; Paul Sweetnam; Tatsuro Ishibashi; Ali Hafezi-Moghadam

Age is a major risk factor in age-related macular degeneration (AMD), but the underlying cause is unknown. We find increased Rho-associated kinase (ROCK) signaling and M2 characteristics in eyes of aged mice, revealing immune changes in aging. ROCK isoforms determine macrophage polarization into M1 and M2 subtypes. M2-like macrophages accumulated in AMD, but not in normal eyes, suggesting that these macrophages may be linked to macular degeneration. M2 macrophages injected into the mouse eye exacerbated choroidal neovascular lesions, while M1 macrophages ameliorated them, supporting a causal role for macrophage subtypes in AMD. Selective ROCK2 inhibition with a small molecule decreased M2-like macrophages and choroidal neovascularization. ROCK2 inhibition upregulated M1 markers without affecting macrophage recruitment, underlining the plasticity of these macrophages. These results reveal age-induced innate immune imbalance as underlying AMD pathogenesis. Targeting macrophage plasticity opens up new possibilities for more effective AMD treatment.


The FASEB Journal | 2014

Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy

Keijiro Ishikawa; Shigeo Yoshida; Shintaro Nakao; Takahito Nakama; Takeshi Kita; Ryo Asato; Yukio Sassa; Ryoichi Arita; Masanori Miyazaki; Hiroshi Enaida; Yuji Oshima; Noboru Murakami; Hiroaki Niiro; Junya Ono; Akira Matsuda; Yoshinobu Goto; Koichi Akashi; Kenji Izuhara; Akira Kudo; Toshihiro Kono; Ali Hafezi-Moghadam; Tatsuro Ishibashi

Proliferative vitreoretinopathy (PVR) is a severe, vision‐threatening disorder characterized by the fibrous membrane formation that leads to trac‐tional retinal detachment. There has been no effective therapeutic approach other than vitreoretinal surgery. In this study, DNA microarray analysis of the fibrous membranes revealed significant up‐regulation of periostin. We also found increased periostin expression in the vitreous and retinal pigment epithelial (RPE) cells from fibrous membranes of PVR patients. In vitro, periostin increased proliferation, adhesion, migration, and collagen production in RPE cells through integrin αVmediated FAK and AKT phosphorylation. Periostin blockade suppressed migration and adhesion induced by TGFβ2 and PVR vitreous. In vivo, periostin inhibition had the inhibitory effect on progression of experimental PVR in rabbit eyes without affecting the viability of retinal cells. These results identified periostin as a pivotal molecule for fibrous membrane formation as well as a promising therapeutic target for PVR.—Ishikawa, K., Yoshida, S., Nakao, S., Nakama, T., Kita, T., Asato, R., Sassa, Y., Arita, R., Miyazaki, M., Enaida, H., Oshima, Y., Murakami, N., Niiro, H., Ono, J., Matsuda, A., Goto, Y., Akashi, K., Izuhara, K., Kudo, A., Kono, T., Hafezi‐Moghadam, A., Ishibashi, T. Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J. 28, 131–142 (2014). www.fasebj.org


Blood | 2011

Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: an endogenous trapping mechanism links lymph- and angiogenesis.

Shintaro Nakao; Souska Zandi; Yasuaki Hata; Shuhei Kawahara; Ryoichi Arita; Alexander Schering; Dawei Sun; Mark I. Melhorn; Y. Ito; Nuria Lara-Castillo; Tatsuro Ishibashi; Ali Hafezi-Moghadam

Angio- and lymphangiogenesis are inherently related processes. However, how blood and lymphatic vessels regulate each other is unknown. This work introduces a novel mechanism explaining the temporal and spatial relation of blood and lymphatic vessels. Vascular endothelial growth factor-A (VEGF-A) surprisingly reduced VEGF-C in the supernatant of blood vessel endothelial cells, suggesting growth factor (GF) clearance by the growing endothelium. The orientation of lymphatic sprouting toward angiogenic vessels and away from exogenous GFs was VEGF-C dependent. In vivo molecular imaging revealed higher VEGF receptor (R)-2 in angiogenic tips compared with normal vessels. Consistently, lymphatic growth was impeded in the angiogenic front. VEGF-C/R-2 complex in the cytoplasm of VEGF-A-treated endothelium indicated that receptor-mediated internalization causes GF clearance from the extracellular matrix. GF clearance by receptor-mediated internalization is a new paradigm explaining various characteristics of lymphatics.


American Journal of Ophthalmology | 2010

Histopathology of Neovascular Tissue From Eyes With Proliferative Diabetic Retinopathy After Intravitreal Bevacizumab Injection

Ri-ichiro Kohno; Yasuaki Hata; Yasutaka Mochizuki; Ryoichi Arita; Shuhei Kawahara; Takeshi Kita; Masanori Miyazaki; Toshio Hisatomi; Yasuhiro Ikeda; Lloyd Paul Aiello; Tatsuro Ishibashi

PURPOSE To examine the histopathologic effect of a single intravitreal injection of bevacizumab on newly formed vessels in eyes with proliferative diabetic retinopathy (PDR). DESIGN Interventional case series and laboratory investigation. METHODS Two days after intravitreal injection of bevacizumab (1.25 mg/eye), pars plana vitrectomy or trabeculectomy was performed for the treatment of PDR or neovascular glaucoma (NVG) associated with PDR. Ten surgically removed preretinal proliferative tissues and 6 deep scleral flaps containing trabecular meshwork were fixed in 2% glutaraldehyde or 4% paraformaldehyde and were subjected to transmission electron microscopic analysis, immunohistochemical analysis, and terminal deoxyuridiine triphosphate (dUTP) nick-end labeling staining. Two surgically removed preretinal proliferative tissues and 2 deep scleral flaps from patients with PDR and NVG, but without preoperative intravitreal injection of bevacizumab (IVB), served as controls. RESULTS In control tissues, vascular endothelial cells possessed many fenestrations and were accompanied by pericytes. Apoptotic vascular endothelial cells frequently were observed in tissue after intravitreal injection of bevacizumab, whereas they were not observed in control tissues. Additionally, no apparent fenestration was observed in newly formed vessels from either proliferative tissue or trabecular meshwork after intravitreal injection of bevacizumab. In both PDR and NVG tissues after intravitreal injection of bevacizumab, overexpression of smooth muscle actin was observed in newly formed vessels, suggesting that the treatment may have increased pericytes on the vasculature as compared with control tissue. CONCLUSIONS Intravitreal injection of bevacizumab may induce changes in immature, newly formed vessels of PDR or NVG tissue, leading to endothelial apoptosis with vascular regression, while inducing normalization of premature vessels by increasing pericyte coverage and reducing vessel fenestration.


British Journal of Ophthalmology | 2015

Increased vitreous concentrations of MCP-1 and IL-6 after vitrectomy in patients with proliferative diabetic retinopathy: possible association with postoperative macular oedema

Shigeo Yoshida; Yuki Kubo; Yoshiyuki Kobayashi; Yedi Zhou; Takahito Nakama; Muneo Yamaguchi; Takashi Tachibana; Keijiro Ishikawa; Ryoichi Arita; Shintaro Nakao; Yukio Sassa; Yuji Oshima; Toshihiro Kono; Tatsuro Ishibashi

Purpose To determine whether vitreal concentrations of MCP-1, IL-6 and IL-8 are altered after vitrectomy in patients with proliferative diabetic retinopathy (PDR) and to investigate whether the altered levels of these cytokines are associated with postoperative macular oedema. Methods Vitreous samples were collected from 36 eyes of 33 patients with PDR before pars plana vitrectomy without intraocular lens (IOL) implantation, and also from the same 36 eyes during IOL implantation surgery approximately 7 months after the initial vitrectomy. Levels of MCP-1, IL-6, IL-8 and vascular endothelial growth factor were measured by flow cytometry using cytometric bead array (CBA) technology. Results The mean vitreous levels of MCP-1, IL-6 and IL-8 in the samples collected before vitrectomy were significantly higher in patients with PDR than in control patients (p<0.0001). The levels of MCP-1 and IL-6 in the samples collected at the time of IOL implantation were significantly higher than those collected before vitrectomy (p<0.05). In contrast, the level of IL-8 was significantly lower after vitrectomy (p<0.05). The levels of IL-6 and IL-8, but not MCP-1, in the vitreous from eyes with PDR were inversely correlated with the interval between the initial vitrectomy and the time of implantation surgery. Among the vitrectomised patients, the mean vitreous level of MCP-1 in eyes with diabetic macular oedema (DME) was significantly higher than in those without DME (p=0.028). Conclusions The elevated levels of MCP-1 and IL-6 may indicate prolonged inflammation even after successful vitrectomy, which can cause postoperative DME.


Investigative Ophthalmology & Visual Science | 2013

A key role for ROCK in TNF-α-mediated diabetic microvascular damage.

Ryoichi Arita; Shintaro Nakao; Takeshi Kita; Shuhei Kawahara; Ryo Asato; Shigeo Yoshida; Hiroshi Enaida; Ali Hafezi-Moghadam; Tatsuro Ishibashi

PURPOSE Leukocyte adhesion releases tumor necrosis factor (TNF)-α that contributes to endothelial damage in early diabetic retinopathy (DR). Rho/Rho-kinase (ROCK) signaling mediates retinal endothelial damage in early DR. However, whether ROCK regulates TNF-α-mediated diabetic vascular damage is unknown. Here, the contribution of ROCK to TNF-α-mediated microvascular damage is investigated. METHODS In DR patients and nondiabetic control subjects, the levels of membranous (m) TNF-α on neutrophils, soluble (s) TNF-α and its receptors in sera, were measured. In cultured microvascular endothelial cells, phosphorylation of myosin phosphatase target protein (MYPT)-1, a downstream target of ROCK, was investigated with TNF-α or DR sera pretreatment. TNF-α-induced intercellular adhesion molecule-1 (ICAM-1) and endothelial nitric oxide synthase (eNOS) phosphorylation were measured with and without ROCK inhibition by fasudil or ROCK-specific small-interfering RNA (siRNA). In isolated neutrophils from control subjects, MYPT-1 phosphorylation was investigated in the presence of TNF-α. The impact of ROCK inhibition by fasudil on TNF-α-induced integrin (CD18, CD11a, CD11b) and intracellular cytoskeletal changes were investigated. RESULTS The serum levels of mTNF-α, sTNF-α, and its receptors were significantly elevated in DR patients. TNF-α as well as DR sera promoted MYPT-1 phosphorylation in endothelial cells, which was significantly reduced by anti-TNF-α neutralizing antibody. TNF-α-induced ICAM-1 expression, eNOS dephosphorylation, cytoskeletal changes, and CD11b/18 expression in neutrophils were significantly suppressed by fasudil as well as ROCK-specific siRNA. CONCLUSIONS ROCK is a key mediator of TNF-α signaling in diabetic microvessels. The important role of TNF-α in early DR provides a new rationale for ROCK inhibition beyond the previously shown mechanisms.


Investigative Ophthalmology & Visual Science | 2016

Vascular Normalization by ROCK Inhibitor: Therapeutic Potential of Ripasudil (K-115) Eye Drop in Retinal Angiogenesis and Hypoxia.

Muneo Yamaguchi; Shintaro Nakao; Ryoichi Arita; Yoshihiro Kaizu; Mitsuru Arima; Yedi Zhou; Takeshi Kita; Shigeo Yoshida; Kazuhiro Kimura; Tomoyuki Isobe; Yoshio Kaneko; Koh-Hei Sonoda; Tatsuro Ishibashi

PURPOSE In this study, we investigated the therapeutic potential of a Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor ripasudil (K-115) eye drop on retinal neovascularization and hypoxia. METHODS In vitro, human retinal microvascular endothelial cells (HRMECs) were pretreated with ripasudil and then stimulated with VEGF. ROCK activity was evaluated by phosphorylation of myosin phosphatase target protein (MYPT)-1. Endothelial migration and cell viability were assessed by cell migration and MTT assay, respectively. The concentration of ripasudil in the retina was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In vivo, normal saline, 0.4%, or 0.8% ripasudil were administered three times a day to mice with oxygen-induced retinopathy (OIR). The areas of neovascularization and avascular retina were also quantified with retinal flat-mounts at postnatal day (P) 15, P17, or P21. The retinal hypoxic area was evaluated using hypoxia-sensitive drug pimonidazole by immunohistochemistry at P17. The vascular normalization was also evaluated by immunohistochemistry at P17. RESULTS Ripasudil but not fasudil significantly reduced VEGF-induced MYPT-1 phosphorylation in HRMECs at 30 μmol/L. Ripasudil significantly inhibited VEGF-induced HRMECs migration and proliferation. The concentration of ripasudil in the retina was 3.8 to 10.4 μmol/L and 6.8 to 14.8 μmol/L after 0.4% and 0.8% ripasudil treatment, respectively. In the 0.4% and 0.8% ripasudil treated OIR mice, the areas of neovascularization as well as avascular area in the retina was significantly reduced compared with those of saline-treated mice at P17 and P21. Pimonidazole staining revealed that treatment with 0.4% and 0.8% ripasudil significantly inhibited the increase in the hypoxic area compared with saline. 0.8% ripasudil could cause intraretinal vascular sprouting and increase retinal vascular perfusion. CONCLUSIONS Novel ROCK inhibitor ripasudil eye drop has therapeutic potential in the treatment of retinal hypoxic neovascular diseases via antiangiogenic effects as well as vascular normalization.

Collaboration


Dive into the Ryoichi Arita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Hafezi-Moghadam

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge