Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryoichi Ishimatsu is active.

Publication


Featured researches published by Ryoichi Ishimatsu.


Journal of Physical Chemistry A | 2013

Solvent effect on thermally activated delayed fluorescence by 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene

Ryoichi Ishimatsu; Shigeyuki Matsunami; Katsuyuki Shizu; Chihaya Adachi; Koji Nakano; Toshihiko Imato

Thermally activated delayed fluorescence (TADF) is fluorescence arising from a reverse intersystem crossing (RISC) from the lowest triplet (T1) to the singlet excited state (S1), where these states are separated by a small energy gap (ΔEst), followed by a radiative transition to the ground state (S0). Rate constants relating TADF processes in 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) were determined at four different solvent polarities (toluene, dichloromethane, ethanol, and acetonitrile). We revealed that the rate constant of RISC, kRISC, which is the most important factor for TADF, was significantly enhanced by a reduced ΔEst in more polar solvents. The smaller ΔEst was mainly attributable to a stabilization of the S1 state. This stabilization also induced a Stokes shift in fluorescence through a relatively large change of the dipole moment between S1 and S0 states (17 D). Despite of this factor, we observed a negative correlation between ΔEst and efficiency of the delayed fluorescence (φd). This was ascribed to a lower intersystem crossing rate, kISC, and increased nonradiative decay from S1, k(s)nrs, in polar solvents.


Journal of the American Chemical Society | 2012

Quantitative Imaging of Ion Transport through Single Nanopores by High-Resolution Scanning Electrochemical Microscopy

Mei Shen; Ryoichi Ishimatsu; Jiyeon Kim; Shigeru Amemiya

Here we report on the unprecedentedly high resolution imaging of ion transport through single nanopores by scanning electrochemical microscopy (SECM). The quantitative SECM image of single nanopores allows for the determination of their structural properties, including their density, shape, and size, which are essential for understanding the permeability of the entire nanoporous membrane. Nanoscale spatial resolution was achieved by scanning a 17 nm radius pipet tip at a distance as low as 1.3 nm from a highly porous nanocrystalline silicon membrane in order to obtain the peak current response controlled by the nanopore-mediated diffusional transport of tetrabutylammonium ions to the nanopipet-supported liquid-liquid interface. A 280 nm × 500 nm image resolved 13 nanopores, which corresponds to a high density of 93 nanopores/μm(2). A finite element simulation of the SECM image was performed to assess quantitatively the spatial resolution limited by the tip diameter in resolving two adjacent pores and to determine the actual size of a nanopore, which was approximated as an elliptical cylinder with a depth of 30 nm and major and minor axes of 53 and 41 nm, respectively. These structural parameters were consistent with those determined by transmission electron microscopy, thereby confirming the reliability of quantitative SECM imaging at the nanoscale level.


Analytical Chemistry | 2010

Ion-Selective Permeability of an Ultrathin Nanoporous Silicon Membrane as Probed by Scanning Electrochemical Microscopy Using Micropipet-Supported ITIES Tips

Ryoichi Ishimatsu; Jiyeon Kim; Ping Jing; Christopher C. Striemer; David Z. Fang; Philippe M. Fauchet; James L. McGrath; Shigeru Amemiya

We report on the application of scanning electrochemical microscopy (SECM) to the measurement of the ion-selective permeability of porous nanocrystalline silicon membrane as a new type of nanoporous material with potential applications in analytical, biomedical, and biotechnology device development. The reliable measurement of high permeability in the molecularly thin nanoporous membrane to various ions is important for greater understanding of its structure-permeability relationship and also for its successful applications. In this work, this challenging measurement is enabled by introducing two novel features into amperometric SECM tips based on the micropipet-supported interface between two immiscible electrolyte solutions (ITIES) to reveal the important ion-transport properties of the ultrathin nanopore membrane. The tip of a conventional heat-pulled micropipet is milled using the focused ion beam (FIB) technique to be smoother, better aligned, and subsequently, approach closer to the membrane surface, which allows for more precise and accurate permeability measurement. The high membrane permeability to small monovalent ions is determined using FIB-milled micropipet tips to establish a theoretical formula for the membrane permeability that is controlled by free ion diffusion across water-filled nanopores. Moreover, the ITIES tips are rendered selective for larger polyions with biomedical importance, i.e., polyanionic pentasaccharide Arixtra and polycationic peptide protamine, to yield the membrane permeability that is lower than the corresponding diffusion-limited permeability. The hindered transport of the respective polyions is unequivocally ascribed to electrostatic and steric repulsions from the wall of the nanopores, i.e., the charge and size effects.


Angewandte Chemie | 2014

Electrogenerated chemiluminescence of donor-acceptor molecules with thermally activated delayed fluorescence

Ryoichi Ishimatsu; Shigeyuki Matsunami; Takashi Kasahara; Jun Mizuno; Tomohiko Edura; Chihaya Adachi; Koji Nakano; Toshihiko Imato

The electrochemistry and electrogenerated chemiluminescence (ECL) of four kinds of electron donor-acceptor molecules exhibiting thermally activated delayed fluorescence (TADF) is presented. TADF molecules can harvest light energy from the lowest triplet state by spin up-conversion to the lowest singlet state because of small energy gap between these states. Intense green to red ECL is emitted from the TADF molecules by applying a square-wave voltage. Remarkably, it is shown that the efficiency of ECL from one of the TADF molecule could reach about 50%, which is comparable to its photoluminescence quantum yield.


Analytical and Bioanalytical Chemistry | 2011

Electrochemical heparin sensing at liquid/liquid interfaces and polymeric membranes

Shigeru Amemiya; Yushin Kim; Ryoichi Ishimatsu; Benjamin Kabagambe

The monitoring of heparin and its derivatives in blood samples is important for the safe usage of these anticoagulants and antithrombotics in many medical procedures. Such an analytical task is, however, highly challenging due to their low therapeutic levels in the complex blood matrix, and it still relies on classical, indirect, clot-based assays. Here we review recent progress in the direct electrochemical sensing of heparin and its analogs at liquid/liquid interfaces and polymeric membranes. This progress has been made by utilizing the principle of electrochemical ion transfer at the interface between two immiscible electrolyte solutions (ITIES) to voltammetrically drive the interfacial transfer of polyanionic heparin and monitoring the resulting ionic current as a direct measure of heparin concentration. The sensitivity, selectivity, and reproducibility of the ion-transfer voltammetry of heparin are dramatically enhanced compared to those of traditional potentiometry. This voltammetric principle was successfully applied for the detection of heparin in undiluted blood samples, and was used to develop highly sensitive ion-selective electrodes based on thin polymeric membranes that are intended for analytical applications beyond heparin detection. The mechanism of heparin recognition and transfer at liquid/liquid interfaces was assessed quantitatively via sophisticated micropipet techniques, which aided the development of a powerful ionophore that can extract large heparin molecules into nonpolar organic media. Moreover, the reversible potentiometric detection of a lethal heparin-like contaminant in commercial heparin preparations was achieved through the use of a PVC membrane doped with methyltridodecylammonium chloride, which enables charge density dependent polyanion selectivity.


Journal of the American Chemical Society | 2011

Electrochemical Mechanism of Ion–Ionophore Recognition at Plasticized Polymer Membrane/Water Interfaces

Ryoichi Ishimatsu; Anahita Izadyar; Benjamin Kabagambe; Yushin Kim; Jiyeon Kim; Shigeru Amemiya

Here, we report on the first electrochemical study that reveals the kinetics and molecular level mechanism of heterogeneous ion-ionophore recognition at plasticized polymer membrane/water interfaces. The new kinetic data provide greater understanding of this important ion-transfer (IT) process, which determines various dynamic characteristics of the current technologies that enable highly selective ion sensing and separation. The theoretical assessment of the reliable voltammetric data confirms that the dynamics of the ionophore-facilitated IT follows the one-step electrochemical (E) mechanism controlled by ion-ionophore complexation at the very interface in contrast to the thermodynamically equivalent two-step electrochemical-chemical (EC) mechanism based on the simple transfer of an aqueous ion followed by its complexation in the bulk membrane. Specifically, cyclic voltammograms of Ag(+), K(+), Ca(2+), Ba(2+), and Pb(2+) transfers facilitated by highly selective ionophores are measured and analyzed numerically using the E mechanism to obtain standard IT rate constants in the range of 10(-2) to 10(-3) cm/s at both plasticized poly(vinyl chloride) membrane/water and 1,2-dichloroethane/water interfaces. We demonstrate that these strongly facilitated IT processes are too fast to be ascribed to the EC mechanism. Moreover, the little effect of the viscosity of nonaqueous media on the IT kinetics excludes the EC mechanism, where the kinetics of simple IT is viscosity-dependent. Finally, we employ molecular level models for the E mechanism to propose three-dimensional ion-ionophore complexation at the two-dimensional interface as the unique kinetic requirement for the thermodynamically facilitated IT.


Analytical Chemistry | 2009

Subnanomolar Ion Detection by Stripping Voltammetry with Solid-Supported Thin Polymeric Membrane

Yushin Kim; Patrick J. Rodgers; Ryoichi Ishimatsu; Shigeru Amemiya

Subnanomolar limits of detection (LODs) are obtained for stripping voltammetry based on ion transfer at the interface between the aqueous sample and the thin polymeric membrane supported with a solid electrode. It has been predicted theoretically that a lower LOD can be obtained for a more lipophilic analyte ion, which can be preconcentrated at a higher equilibrium concentration in the solid-supported thin polymeric membrane to enhance a stripping current response. This study is the first to experimentally confirm the general theoretical prediction for both cationic and anionic analytes. Proof-of-concept experiments demonstrate that a subnanomolar LOD of (8 +/- 4) x 10(-11) M tetrapropylammonium is significantly lower than a LOD of less lipophilic tetraethylammonium. Importantly, stripping voltammetry of the cationic analytes is enabled by newly introducing an oxidatively doped poly(3,4-ethylenedioxythiophene) film as the intermediate layer between a plasticized poly(vinyl chloride) membrane and a Au electrode. On the other hand, an undoped poly(3-octylthiophene) film is used as an intermediate layer for voltammetric detection of a lipophilic inorganic anion, hexafluoroarsenate, an arsenical biocide found recently in wastewater. A LOD of (9 +/- 2) x 10(-11) M hexafluoroarsenate thus obtained by ion-transfer stripping voltammetry is comparable to a LOD of 80 pM by inductively coupled plasma mass spectrometry with anion-exchange chromatography. Great sensitivity for a lipophilic ion is potentially useful for environmental analysis because high lipophilicity of an ion is relevant to its bioaccumulation and toxicity.


Electrochimica Acta | 2013

Electrochemical sensing and imaging based on ion transfer at liquid/liquid interfaces

Shigeru Amemiya; Jiyeon Kim; Anahita Izadyar; Benjamin Kabagambe; Mei Shen; Ryoichi Ishimatsu

Here we review the recent applications of ion transfer (IT) at the interface between two immiscible electrolyte solutions (ITIES) for electrochemical sensing and imaging. In particular, we focus on the development and recent applications of the nanopipet-supported ITIES and double-polymer-modified electrode, which enable the dynamic electrochemical measurements of IT at nanoscopic and macroscopic ITIES, respectively. High-quality IT voltammograms are obtainable using either technique to quantitatively assess the kinetics and dynamic mechanism of IT at the ITIES. Nanopipet-supported ITIES serves as an amperometric tip for scanning electrochemical microscopy to allow for unprecedentedly high-resolution electrochemical imaging. Voltammetric ion sensing at double-polymer-modified electrodes offers high sensitivity and unique multiple-ion selectivity. The promising future applications of these dynamic approaches for bioanalysis and electrochemical imaging are also discussed.


Talanta | 2012

A simple and selective fluorometric assay for dopamine using a calcein blue–Fe2+ complex fluorophore

Daisuke Seto; Tomoharu Maki; Nobuaki Soh; Koji Nakano; Ryoichi Ishimatsu; Toshihiko Imato

A novel fluorimetric assay for dopamine using calcein blue (CB) complexed with Fe(2+) ion as a chemical sensor is described. The fluorescence arising from CB of the CB-Fe(2+) complex is quenched by the Fe(2+) ion. When dopamine is added to a solution of the CB-Fe(2+) complex, a dopamine-Fe(2+) complex is formed as the result of a ligand exchange reaction between CB and dopamine which permits the fluorescence from CB to be recovered. The fluorescence intensity at the wavelength of 440 nm (at the excitation wavelength of 340 nm) was found to be proportional to the concentration of the dopamine added to the CB-Fe(2+) complex solution, which permits dopamine to be quantitatively determined. The selectivity for dopamine in the presence of other catecholamines and related compounds was good. The calibration curve for dopamine, determined using experimental data was successfully simulated based on the equilibrium of the ligand exchange reaction between CB and dopamine. The working range is from 50 μM to 1mM and the limit of detection and limit of quantization are ca 10 μM and 50 μM, respectively. The assay is simple and economical, compared with conventional methods such as an enzyme-linked immunosorbent assay (ELISA).


Analytical Chemistry | 2014

Subnanomolar Detection Limit of Stripping Voltammetric Ca2+-Selective Electrode: Effects of Analyte Charge and Sample Contamination

Benjamin Kabagambe; Mohammed B. Garada; Ryoichi Ishimatsu; Shigeru Amemiya

Ultrasensitive ion-selective electrode measurements based on stripping voltammetry are an emerging sensor technology with low- and subnanomolar detection limits. Here, we report on stripping voltammetry of down to 0.1 nM Ca(2+) by using a thin-polymer-coated electrode and demonstrate the advantageous effects of the divalent charge on sensitivity. A simple theory predicts that the maximum concentration of an analyte ion preconcentrated in the thin membrane depends exponentially on the charge and that the current response based on exhaustive ion stripping from the thin membrane is proportional to the square of the charge. The theoretical predictions are quantitatively confirmed by using a thin ionophore-doped polymer membrane spin-coated on a conducting-polymer-modified electrode. The potentiostatic transfer of hydrophilic Ca(2+) from an aqueous sample into the hydrophobic double-polymer membrane is facilitated by an ionophore with high Ca(2+) affinity and selectivity. The resultant concentration of the Ca(2+)-ionophore complex in the ~1 μm-thick membrane can be at least 5 × 10(6) times higher than the aqueous Ca(2+) concentration. The stripping voltammetric current response to the divalent ion is enhanced to achieve a subnanomolar detection limit under the condition where a low-nanomolar detection limit is expected for a monovalent ion. Significantly, charge-dependent sensitivity is attractive for the ultrasensitive detection of multivalent ions with environmental and biomedical importance such as heavy metal ions and polyionic drugs. Importantly, this stripping voltammetric approach enables the absolute determination of subnanomolar Ca(2+) contamination in ultrapure water containing 10 mM supporting electrolytes, i.e., an 8 orders of magnitude higher background concentration.

Collaboration


Dive into the Ryoichi Ishimatsu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge