Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryoji Kusaka is active.

Publication


Featured researches published by Ryoji Kusaka.


Journal of Chemical Physics | 2015

Accurate determination of complex χ(2) spectrum of the air/water interface.

Satoshi Nihonyanagi; Ryoji Kusaka; Kenichi Inoue; Aniruddha Adhikari; Shoichi Yamaguchi; Tahei Tahara

Discussion on the structure of the water surface relies on accurate determination of the χ(2) spectrum. For obtaining accurate χ(2) spectrum of the air/water interface in the OH stretch region, we performed heterodyne-detected vibrational sum-frequency generation measurements with a high phase accuracy, and also examined the validity of the phase and amplitude calibration using different non-resonant materials. In contrast to the previous reports, it was concluded that the imaginary part of the χ(2) spectrum of the air/water interface does not exhibit noticeable positive resonance in the low frequency region within the experimental error. This result urges us to reconsider the structure of the air/water interface based on the accurate χ(2) spectrum.


Journal of the American Chemical Society | 2011

UV and IR Spectroscopic Studies of Cold Alkali Metal Ion-Crown Ether Complexes in the Gas Phase

Yoshiya Inokuchi; Oleg V. Boyarkin; Ryoji Kusaka; Takeharu Haino; Takayuki Ebata; Thomas R. Rizzo

We report UV photodissociation (UVPD) and IR-UV double-resonance spectra of dibenzo-18-crown-6 (DB18C6) complexes with alkali metal ions (Li(+), Na(+), K(+), Rb(+), and Cs(+)) in a cold, 22-pole ion trap. All the complexes show a number of vibronically resolved UV bands in the 36,000-38,000 cm(-1) region. The Li(+) and Na(+) complexes each exhibit two stable conformations in the cold ion trap (as verified by IR-UV double resonance), whereas the K(+), Rb(+), and Cs(+) complexes exist in a single conformation. We analyze the structure of the conformers with the aid of density functional theory (DFT) calculations. In the Li(+) and Na(+) complexes, DB18C6 distorts the ether ring to fit the cavity size to the small diameter of Li(+) and Na(+). In the complexes with K(+), Rb(+), and Cs(+), DB18C6 adopts a boat-type (C(2v)) open conformation. The K(+) ion is captured in the cavity of the open conformer thanks to the optimum matching between the cavity size and the ion diameter. The Rb(+) and Cs(+) ions sit on top of the ether ring because they are too large to enter the cavity of the open conformer. According to time-dependent DFT calculations, complexes that are highly distorted to hold metal ions open the ether ring upon S(1)-S(0) excitation, and this is confirmed by extensive low-frequency progressions in the UVPD spectra.


Journal of Physical Chemistry A | 2012

Ion Selectivity of Crown Ethers Investigated by UV and IR Spectroscopy in a Cold Ion Trap

Yoshiya Inokuchi; Oleg V. Boyarkin; Ryoji Kusaka; Takeharu Haino; Takayuki Ebata; Thomas R. Rizzo

Electronic and vibrational spectra of benzo-15-crown-5 (B15C5) and benzo-18-crown-6 (B18C6) complexes with alkali metal ions, M(+)•B15C5 and M(+)•B18C6 (M = Li, Na, K, Rb, and Cs), are measured using UV photodissociation (UVPD) and IR-UV double resonance spectroscopy in a cold, 22-pole ion trap. We determine the structure of conformers with the aid of density functional theory calculations. In the Na(+)•B15C5 and K(+)•B18C6 complexes, the crown ethers open the most and hold the metal ions at the center of the ether ring, demonstrating an optimum matching in size between the cavity of the crown ethers and the metal ions. For smaller ions, the crown ethers deform the ether ring to decrease the distance and increase the interaction between the metal ions and oxygen atoms; the metal ions are completely surrounded by the ether ring. In the case of larger ions, the metal ions are too large to enter the crown cavity and are positioned on it, leaving one of its sides open for further solvation. Thermochemistry data calculated on the basis of the stable conformers of the complexes suggest that the ion selectivity of crown ethers is controlled primarily by the enthalpy change for the complex formation in solution, which depends strongly on the complex structure.


Physical Chemistry Chemical Physics | 2007

Laser spectroscopic study on the conformations and the hydrated structures of benzo-18-crown-6-ether and dibenzo-18-crown-6-ether in supersonic jets

Ryoji Kusaka; Yoshiya Inokuchi; Takayuki Ebata

The laser-induced fluorescence spectra of jet-cooled benzo-18-crown-6 (B18C6) and dibenzo-18-crown-6 (DB18C6) exhibit a number of vibronic bands in the 35 000-37 000 cm(-1) region. We attribute these bands to monomers and hydrated clusters by fluorescence-detected IR-UV and UV-UV double resonance spectroscopy. We found four and two conformers for bare B18C6 and DB18C6, and the hydration of one water molecule reduces the number of isomers to three and one for B18C6-(H(2)O)(1) and DB18C6-(H(2)O)(1), respectively. The IR-UV spectra of B18C6-(H(2)O)(1) and DB18C6-(H(2)O)(1) suggest that all isomers of the monohydrated clusters have a double proton-donor type (bidentate) hydration. That is, the water molecule is bonded to B18C6 or DB18C6 via two O-H[dot dot dot]O hydrogen bonds. The blue shift of the electronic origin of the monohydrated clusters and the quantum chemical calculation suggest that the water molecule in B18C6-(H(2)O)(1) and DB18C6-(H(2)O)(1) prefers to be bonded to the ether oxygen atoms near the benzene ring.


Journal of Physical Chemistry A | 2013

Role of ring-constrained γ-amino acid residues in α/γ-peptide folding: single-conformation UV and IR spectroscopy.

Ryoji Kusaka; Di Zhang; Patrick S. Walsh; Joseph R. Gord; Brian F. Fisher; Samuel H. Gellman; Timothy S. Zwier

The capped α/γ-peptide foldamers Ac-γACHC-Ala-NH-benzyl (γα) and Ac-Ala-γACHC-NH-benzyl (αγ) were studied in the gas phase under jet-cooled conditions using single-conformation spectroscopy. These molecules serve as models for local segments of larger heterogeneous 1:1 α/γ-peptides that have recently been synthesized and shown to form a 12-helix composed of repeating C12 H-bonded rings both in crystalline form and in solution [Guo, L.; et al. J. Am. Chem. Soc. 2009, 131, 16018]. The γα and αγ peptide subunits are structurally constrained at the Cβ-Cγ bond of the γ-residue with a cis-cyclohexyl ring and by an ethyl group at the Cα position. These triamides are the minimum length necessary for the formation of the C12 H-bond. Resonant two-photon ionization (R2PI) provides ultraviolet spectra that have contributions from all conformational isomers, while IR-UV hole-burning (IR-UV HB) and resonant ion-dip infrared (RIDIR) spectroscopies are used to record single-conformation UV and IR spectra, respectively. Four and six conformers are identified in the R2PI spectra of the γα and αγ peptides, respectively. RIDIR spectra in the NH stretch, amide I (C═O stretch), and amide II (NH bend) regions are compared with the predictions of density functional theory (DFT) calculations at the M05-2X/6-31+G* level, leading to definite assignments for the H-bonding architectures of the conformers. While the C12 H-bond is present in both γα and αγ, C9 rings are more prevalent, with seven of ten conformers incorporating a C9 H-bond involving in the γ-residue. Nevertheless, comparison of the assigned structures of gas-phase γα and αγ with the crystal structures for γα and larger α/γ-peptides reveals that the constrained γ-peptide backbone formed by the C9 ring is structurally similar to that formed by the larger C12 ring present in the 12-helix. These results confirm that the ACHC/ethyl constrained γ-residue is structurally preorganized to play a significant role in promoting C12 H-bond formation in larger α/γ-peptides.


Journal of Physical Chemistry Letters | 2015

Isomer-Specific Spectroscopy of Benzene–(H2O)n, n = 6,7: Benzene’s Role in Reshaping Water’s Three-Dimensional Networks

Daniel P. Tabor; Ryoji Kusaka; Patrick Walsh; Edwin L. Sibert; Timothy S. Zwier

The water hexamer and heptamer are the smallest sized water clusters that support three-dimensional hydrogen-bonded networks, with several competing structures that could be altered by interactions with a solute. Using infrared-ultraviolet double resonance spectroscopy, we record isomer-specific OH stretch infrared spectra of gas-phase benzene-(H2O)(6,7) clusters that demonstrate benzenes surprising role in reshaping (H2O)(6,7). The single observed isomer of benzene-(H2O)6 incorporates an inverted book structure rather than the cage or prism. The main conformer of benzene-(H2O)7 is an inserted-cubic structure in which benzene replaces one water molecule in the S4-symmetry cube of the water octamer, inserting itself into the water cluster by engaging as a π H-bond acceptor with one water and via C-H···O donor interactions with two others. The corresponding D(2d)-symmetry inserted-cube structure is not observed, consistent with the calculated energetic preference for the S4 over the D(2d) inserted cube. A reduced-dimension model that incorporates stretch-bend Fermi resonance accounts for the spectra in detail and sheds light on the hydrogen-bonding networks themselves and on the perturbations imposed on them by benzene.


ChemPhysChem | 2013

Laser Spectroscopic Study of Cold Host-Guest Complexes of Crown Ethers in the Gas Phase

Yoshiya Inokuchi; Ryoji Kusaka; Takayuki Ebata; Oleg V. Boyarkin; Thomas R. Rizzo

A laser spectroscopic study on the structure and dynamics of cold host-guest inclusion complexes of crown ethers (CEs) with various neutral and ionic species in the gas phase is presented. The complexes with neutral guest species are formed by using supersonic free jets, and those with ionic species are generated with electrospray ionization combined with a cold 22-pole ion trap. For CEs, various sizes of 3n-crown-n ethers (n=4, 5, 6, and 8) and their benzene-substituted species are used. For the guest species, water, methanol, ammonia, acetylene, and phenol are employed as neutral guest species, and for charged guest species, alkali metal cations are chosen. The electronic and vibrational spectra of the complexes are measured by using various laser spectroscopic methods; electronic spectra for the neutral complexes are measured by laser-induced fluorescence. Discrimination of different species such as conformers is performed by ultraviolet-ultraviolet hole-burning spectroscopy. The vibrational spectra of selected species are observed by infrared-ultraviolet double-resonance (IR-UV DR) spectroscopy. For the ionic complexes, ultraviolet photodissociation and IR-UV DR spectroscopy are applied. The complex structures are determined by comparing the observed spectra with those of possible structures obtained by density functional theory calculations. How the host CEs change their conformation or which conformer prefers to form unique inclusion complexes are discussed. These results reveal the key interactions for forming special complexes leading to molecular recognition.


Sensors | 2010

Structures and Encapsulation Motifs of Functional Molecules Probed by Laser Spectroscopic and Theoretical Methods

Ryoji Kusaka; Yoshiya Inokuchi; Sotiris S. Xantheas; Takayuki Ebata

We report laser spectroscopic and computational studies of host/guest hydration interactions between functional molecules (hosts) and water (guest) in supersonic jets. The examined hosts include dibenzo-18-crown-6-ether (DB18C6), benzo-18-crown-6-ether (B18C6) and calix[4]arene (C4A). The gaseous complexes between the functional molecular hosts and water are generated under jet-cooled conditions. Various laser spectroscopic methods are applied for these species: the electronic spectra are observed by laser-induced fluorescence (LIF), mass-selected resonance enhanced multiphoton ionization (REMPI) and ultraviolet-ultraviolet hole-burning (UV-UV HB) spectroscopy, whereas the vibrational spectra for each individual species are observed by infrared-ultraviolet double resonance (IR-UV DR) spectroscopy. The obained results are analyzed by first principles electronic structure calculations. We discuss the conformations of the host molecules, the structures of the complexes, and key interactions forming the specific complexes.


Journal of the American Chemical Society | 2016

Partially Hydrated Electrons at the Air/Water Interface Observed by UV-Excited Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy

Korenobu Matsuzaki; Ryoji Kusaka; Satoshi Nihonyanagi; Shoichi Yamaguchi; Takashi Nagata; Tahei Tahara

Hydrated electrons are the most fundamental anion species, consisting only of electrons and surrounding water molecules. Although hydrated electrons have been extensively studied in the bulk aqueous solutions, even their existence is still controversial at the water surface. Here, we report the observation and characterization of hydrated electrons at the air/water interface using new time-resolved interface-selective nonlinear vibrational spectroscopy. With the generation of electrons at the air/water interface by ultraviolet photoirradiation, we observed the appearance of a strong transient band in the OH stretch region by heterodyne-detected vibrational sum-frequency generation. Through the comparison with the time-resolved spectra at the air/indole solution interface, the transient band was assigned to the vibration of water molecules that solvate electrons at the interface. The analysis of the frequency and decay of the observed transient band indicated that the electrons are only partially hydrated at the water surface, and that they escape into the bulk within 100 ps.


Journal of Physical Chemistry B | 2015

Anomalous cage effect in the excited state dynamics of catechol in the 18C6-catecol host-guest complex

Fumiya Morishima; Ryoji Kusaka; Yoshiya Inokuchi; Takeharu Haino; Takayuki Ebata

We determined the number of isomers and their structures for the 18-crown-6 (18C6)-catechol host-guest complex, and examined the effect of the complex formation on the S1 ((1)ππ*) dynamics of catechol under a supersonically cooled gas phase condition and in cyclohexane solution at room temperature. In the gas phase experiment, UV-UV hole-burning spectra of the 18C6-catechol 1:1 complex indicate that there are three stable isomers. For bare catechol, it has been reported that two adjacent OH groups have an intramolecular hydrogen (H) bond. The IR-UV double resonance spectra show two types of isomers in the 18C6-catechol 1:1 complex; one of the three 18C6-catechol 1:1 isomers has the intramolecular H-bond between the two OH groups, while in the other two isomers the intramolecular H-bond is broken and the two OH groups are H-bonded to oxygen atoms of 18C6. The complex formation with 18C6 substantially elongates the S1 lifetime from 7 ps for bare catechol and 2.0 ns for the catechol-H2O complex to 10.3 ns for the 18C6-catechol 1:1 complex. Density functional theory calculations of the 18C6-catechol 1:1 complex suggest that this elongation is attributed to a larger energy gap between the S1 ((1)ππ*) and (1)πσ* states than that of bare catechol or the catechol-H2O complex. In cyclohexane solution, the enhancement of the fluorescence intensity of catechol was found by adding 18C6, due to the formation of the 18C6-catechol complex in solution, and the complex has a longer S1 lifetime than that of catechol monomer. From the concentration dependence of the fluorescence intensity, we estimated the equilibrium constant K for the 18C6 + catechol ⇄ 18C6-catechol reaction. The obtained value (log K = 2.3) in cyclohexane is comparable to those for alkali metal ions or other molecular ions, indicating that 18C6 efficiently captures catechol in solution. Therefore, 18C6 can be used as a sensitive sensor of catechol derivatives in solution with its high ability of fluorescence enhancement.

Collaboration


Dive into the Ryoji Kusaka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oleg V. Boyarkin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Thomas R. Rizzo

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Sotiris S. Xantheas

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge