Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryoko Koga is active.

Publication


Featured researches published by Ryoko Koga.


Molecules | 2015

Synthesis and Evaluation of New Pyrazoline Derivatives as Potential Anticancer Agents

Muhammed Karabacak; Mehlika Dilek Altıntop; Halil Ibrahim Ciftci; Ryoko Koga; Masami Otsuka; Mikako Fujita; Ahmet Özdemir

New pyrazoline derivatives were synthesized and evaluated for their cytotoxic effects on AsPC-1 human pancreatic adenocarcinoma, U87 and U251 human glioblastoma cell lines. 1-[((5-(4-Methylphenyl)-1,3,4-oxadiazol-2-yl)thio)acetyl]-3-(2-thienyl)-5-(4-chlorophenyl)-2-pyrazoline (11) was found to be the most effective anticancer agent against AsPC-1 and U251 cell lines, with IC50 values of 16.8 µM and 11.9 µM, respectively. Tumor selectivity of compound 11 was clearly seen between Jurkat human leukemic T-cell line and human peripheral blood mononuclear cells (PBMC). Due to its promising anticancer activity, compound 11 was chosen for apoptosis/necrosis evaluation and DNA-cleavage analysis in U251 cells. Compound 11-treated U251 cells exhibited apoptotic phenotype at low concentration (1.5 µM). DNA-cleaving efficiency of this ligand was more significant than cisplatin and was clearly enhanced by Fe(II)-H2O2-ascorbic acid systems. This result pointed out the relationship between the DNA cleavage and the cell death.


Journal of General Virology | 2014

Poly-proline motif in HIV-2 Vpx is critical for its efficient translation

Ariko Miyake; Mikako Fujita; Haruna Fujino; Ryoko Koga; Sogo Kawamura; Masami Otsuka; Hirotaka Ode; Yasumasa Iwatani; Yosuke Sakai; Naoya Doi; Masako Nomaguchi; Akio Adachi; Yasuyuki Miyazaki

Human immunodeficiency virus type 2 (HIV-2) carries an accessory protein Vpx that is important for viral replication in natural target cells. In its C-terminal region, there is a highly conserved poly-proline motif (PPM) consisting of seven consecutive prolines, encoded in a poly-pyrimidine tract. We have previously shown that PPM is critical for Vpx expression and viral infectivity. To elucidate the molecular basis underlying this observation, we analysed the expression of Vpx proteins with various PPM mutations by in vivo and in vitro systems. We found that the number and position of consecutive prolines in PPM are important for Vpx expression, and demonstrated that PPM is essential for efficient Vpx translation. Furthermore, mutational analysis to synonymously disrupt the poly-pyrimidine tract suggested that the context of PPM amino acid sequences is required for efficient translation of Vpx. We similarly analysed HIV-1 and HIV-2 Vpr proteins structurally related to HIV-2 Vpx. Expression level of the two Vpr proteins lacking PPM was shown to be much lower relative to that of Vpx, and not meaningfully enhanced by introduction of PPM at the C terminus. Finally, we examined the Vpx of simian immunodeficiency virus from rhesus monkeys (SIVmac), which also has seven consecutive prolines, for PPM-dependent expression. A multi-substitution mutation in the PPM markedly reduced the expression level of SIVmac Vpx. Taken together, it can be concluded that the notable PPM sequence enhances the expression of Vpx proteins from viruses of the HIV-2/SIVmac group at the translational level.


Bioorganic & Medicinal Chemistry | 2016

Zinc-mediated binding of a low-molecular-weight stabilizer of the host anti-viral factor apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G

Mohamed O. Radwan; Sachiko Sonoda; Tomohiko Ejima; Ayumi Tanaka; Ryoko Koga; Yoshinari Okamoto; Mikako Fujita; Masami Otsuka

Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G, A3G), is a human anti-virus restriction protein which works deaminase-dependently and -independently. A3G is known to be ubiquitinated by HIV-1 viral infectivity factor (Vif) protein, leading to proteasomal degradation. A3G contains two zinc ions at the N-terminal domain and the C-terminal domain. Four lysine residues, K(297), K(301), K(303), and K(334), are known to be required for Vif-mediated A3G ubiquitination and degradation. Previously, we reported compound SN-1, a zinc chelator that increases steady-state expression level of A3G in the presence of Vif. In this study, we prepared Biotin-SN-1, a biotinylated derivative of SN-1, to study the SN-1-A3G interaction. A pull-down assay revealed that Biotin-SN-1 bound A3G. A zinc-abstraction experiment indicated that SN-1 binds to the zinc site of A3G. We carried out a SN-1-A3G docking study using molecular operating environment. The calculations revealed that SN-1 binds to the C-terminal domain through Zn(2+), H(216), P(247), C(288), and Y(315). Notably, SN-1-binding covers the H(257), E(259), C(288), and C(291) residues that participate in zinc-mediated deamination, and the ubiquitination regions of A3G. The binding of SN-1 presumably perturbs the secondary structure between C(288) and Y(315), leading to less efficient ubiquitination.


Scientific Reports | 2017

A clue to unprecedented strategy to HIV eradication: “Lock-in and apoptosis”

Hiroshi Tateishi; Kazuaki Monde; Kensaku Anraku; Ryoko Koga; Yuya Hayashi; Halil Ibrahim Ciftci; Hasan DeMirci; Taishi Higashi; Keiichi Motoyama; Hidetoshi Arima; Masami Otsuka; Mikako Fujita

Despite the development of antiretroviral therapy against HIV, eradication of the virus from the body, as a means to a cure, remains in progress. A “kick and kill” strategy proposes “kick” of the latent HIV to an active HIV to eventually be “killed”. Latency-reverting agents that can perform the “kick” function are under development and have shown promise. Management of the infected cells not to produce virions after the “kick” step is important to this strategy. Here we show that a newly synthesized compound, L-HIPPO, captures the HIV-1 protein Pr55Gag and intercepts its function to translocate the virus from the cytoplasm to the plasma membrane leading to virion budding. The infecting virus thus “locked-in” subsequently induces apoptosis of the host cells. This “lock-in and apoptosis” approach performed by our novel compound in HIV-infected cells provides a means to bridge the gap between the “kick” and “kill” steps of this eradication strategy. By building upon previous progress in latency reverting agents, our compound appears to provide a promising step toward the goal of HIV eradication from the body.


Bioorganic & Medicinal Chemistry | 2015

Novel metal chelating molecules with anticancer activity. Striking effect of the imidazole substitution of the histidine–pyridine–histidine system

Taha F.S. Ali; Kana Iwamaru; Halil Ibrahim Ciftci; Ryoko Koga; Masahiro Matsumoto; Yasunori Oba; Hiromasa Kurosaki; Mikako Fujita; Yoshinari Okamoto; Kazuo Umezawa; Mitsuyoshi Nakao; Takuichiro Hide; Keishi Makino; Jun Ichi Kuratsu; Mohamed Abdel-Aziz; Gamal El-Din A.A. Abuo-Rahma; Eman A. Beshr; Masami Otsuka

Previously we have reported a metal chelating histidine-pyridine-histidine system possessing a trityl group on the histidine imidazole, namely HPH-2Trt, which induces apoptosis in human pancreatic adenocarcinoma AsPC-1 cells. Herein the influence of the imidazole substitution of HPH-2Trt was examined. Five related compounds, HPH-1Trt, HPH-2Bzl, HPH-1Bzl, HPH-2Me, and HPH-1Me were newly synthesized and screened for their activity against AsPC-1 and brain tumor cells U87 and U251. HPH-1Trt and HPH-2Trt were highly active among the tested HPH compounds. In vitro DNA cleavage assay showed both HPH-1Trt and HPH-2Trt completely disintegrate pUC19 DNA. The introduction of trityl group decisively potentiated the activity.


Bioorganic & Medicinal Chemistry Letters | 2017

A novel inhibitor of farnesyltransferase with a zinc site recognition moiety and a farnesyl group

Ayumi Tanaka; Mohamed O. Radwan; Akiyuki Hamasaki; Asumi Ejima; Emiko Obata; Ryoko Koga; Hiroshi Tateishi; Yoshinari Okamoto; Mikako Fujita; Mitsuyoshi Nakao; Kazuo Umezawa; Fuyuhiko Tamanoi; Masami Otsuka

Protein prenylation such as farnesylation and geranylgeranylation is associated with various diseases. Thus, many inhibitors of prenyltransferase have been developed. We report novel inhibitors of farnesyltransferase with a zinc-site recognition moiety and a farnesyl/dodecyl group. Molecular docking analysis showed that both parts of the inhibitor fit well into the catalytic domain of farnesyltransferase. The synthesized inhibitors showed activity against farnesyltransferase in vitro and inhibited proliferation of the pancreatic cell line AsPC-1. Among the compounds with farnesyl and dodecyl groups, the inhibitor with a farnesyl group was found to have stronger and more selective activity.


FEBS Letters | 2015

Mutational analysis of HIV-2 Vpx shows that proline residue 109 in the poly-proline motif regulates degradation of SAMHD1.

Halil Ibrahim Ciftci; Haruna Fujino; Ryoko Koga; Minami Yamamoto; Sogo Kawamura; Hiroshi Tateishi; Yasumasa Iwatani; Masami Otsuka; Mikako Fujita

In this study, we performed a mutational analysis to determine whether the mechanism by which HIV‐2 Vpx confers the capacity for infectivity and viral replication in macrophages is solely dependent on its ability to degrade the host antiviral factor SAMHD1. Contrary to expectations, we demonstrated that P109 in the C‐terminal poly‐proline motif of HIV‐2 Vpx has two unique roles: to facilitate the specific degradation of SAMHD1 in macrophages, and to facilitate multimerization of Vpx, therefore preventing SAMHD1 degradation in the presence of high levels of Vpx.


Organic and Biomolecular Chemistry | 2014

Design and synthesis of lipid-coupled inositol 1,2,3,4,5,6-hexakisphosphate derivatives exhibiting high-affinity binding for the HIV-1 MA domain

Hiroshi Tateishi; Kensaku Anraku; Ryoko Koga; Yoshinari Okamoto; Mikako Fujita; Masami Otsuka

The precursor of Gag protein (Pr55(Gag)) of human immunodeficiency virus, the principal structural component required for virus assembly, is known to bind d-myo-phosphatidylinositol 4,5-bisphosphate (PIP2). The N-terminus of Pr55(Gag), the MA domain, plays a critical role in the binding of Pr55(Gag) to the plasma membrane. Herein, we designed and synthesized myo-phosphatidylinositol 2,3,4,5,6-pentakisphosphate (PIP5) derivatives comprising highly phosphorylated inositol and variously modified diacylglycerol to examine the MA-binding properties. The inositol moiety was synthesized starting with myo-inositol and assembled with a hydrophobic glycerol moiety through a phosphate linkage. The Kd value for MA-binding of the PIP5 derivative 2 (Kd = 0.25 μM) was the lowest (i.e., highest affinity) of all derivatives, i.e., 70-fold lower than the Kd for the PIP2 derivative 1 (Kd = 16.9 μM) and 100-fold lower than the Kd for IP6 (Kd = 25.7 μM), suggesting the possibility that the PIP5 derivative blocks Pr55(Gag) membrane binding by competing with PIP2 in MA-binding.


Journal of General Virology | 2017

Zinc-binding site of human immunodeficiency virus 2 Vpx prevents instability and dysfunction of the protein

Minami Yamamoto; Ryoko Koga; Haruna Fujino; Kazunori Shimagaki; Halil Ibrahim Ciftci; Masahiro Kamo; Hiroshi Tateishi; Masami Otsuka; Mikako Fujita

Human immunodeficiency virus 2 Vpx coordinates zinc through residues H39, H82, C87 and C89. We reported previously that H39, H82 and C87 mutants maintain Vpx activity to facilitate the degradation of SAMHD1. Herein, the expression of Vpx mutants in cells was examined in detail. We demonstrated that the zinc-binding site stabilizes the protein to keep its function in virus growth when low levels of Vpx are expressed. At higher levels of expression, Vpx aggregation could occur, and zinc binding would suppress such aggregation. Among the amino acids involved in zinc coordination, H39 plays the most critical role. In summary, zinc binding appears to mitigate flexibility of the three-helix fold of Vpx, thereby preventing dysfunction.HIV-2 Vpx coordinates zinc through residues H39, H82, C87 and C89. We reported previously that H39, H82 and C87 mutants maintain Vpx activity to facilitate the degradation of SAMHD1. Herein, the expression of Vpx mutants in cells was examined in detail. We demonstrated that the zinc-binding site stabilizes the protein to keep its function in virus growth when low levels of Vpx are expressed. At higher levels of expression, Vpx aggregation can occur, and zinc binding would suppress such aggregation. Among the amino acids involved in zinc coordination, H39 plays the most critical role. In summary, zinc binding appears to mitigate flexibility of the three-helix fold of Vpx, thereby preventing dysfunction.


Bioorganic & Medicinal Chemistry Letters | 2016

Synthesis of the biotinylated anti-HIV compound BMMP and the target identification study

Masahiro Kamo; Hiroshi Tateishi; Ryoko Koga; Yoshinari Okamoto; Masami Otsuka; Mikako Fujita

BMMP [2-(benzothiazol-2-ylmethylthio)-4-methylpyrimidine], an inhibitor of HIV-1 replication, was linked to biotin to study the interaction with the presumed target, HIV-1 Pr55(Gag) or CA, by means of surface plasmon resonance. The synthesized Biotin-BMMP inhibited HIV-1 replication to a similar extent as BMMP alone, but did not interact with Pr55(Gag) or CA, suggesting that BMMP exerts its activity by a different mechanism.

Collaboration


Dive into the Ryoko Koga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge