Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryosuke Fujikane is active.

Publication


Featured researches published by Ryosuke Fujikane.


Journal of Biological Chemistry | 2004

Cooperation of the N-terminal helicase and C-terminal endonuclease activities of archaeal Hef protein in processing stalled replication forks

Kayoko Komori; Masumi Hidaka; Takashi Horiuchi; Ryosuke Fujikane; Hideo Shinagawa; Yoshizumi Ishino

Blockage of replication fork progression often occurs during DNA replication, and repairing and restarting stalled replication forks are essential events in all organisms for the maintenance of genome integrity. The repair system employs processing enzymes to restore the stalled fork. In Archaea Hef is a well conserved protein that specifically cleaves nicked, flapped, and fork-structured DNAs. This enzyme contains two distinct domains that are similar to the DEAH helicase family and XPF nuclease superfamily proteins. Analyses of truncated mutant proteins consisting of each domain revealed that the C-terminal nuclease domain independently recognized and incised fork-structured DNA. The N-terminal helicase domain also specifically unwound fork-structured DNA and Holliday junction DNA in the presence of ATP. Moreover, the endonuclease activity of the whole Hef protein was clearly stimulated by ATP hydrolysis catalyzed by the N-terminal domain. These enzymatic properties suggest that Hef efficiently resolves stalled replication forks by two steps, which are branch point transfer to the 5′-end of the nascent lagging strand by the N-terminal helicase followed by template strand incision for leading strand synthesis by the C-terminal endonuclease.


Journal of Biological Chemistry | 2008

The GINS Complex from Pyrococcus furiosus Stimulates the MCM Helicase Activity

Takehiro Yoshimochi; Ryosuke Fujikane; Miyuki Kawanami; Fujihiko Matsunaga; Yoshizumi Ishino

Pyrococcus furiosus, a hyperthermophilic Archaea, has homologs of the eukaryotic MCM (mini-chromosome maintenance) helicase and GINS complex. The MCM and GINS proteins are both essential factors to initiate DNA replication in eukaryotic cells. Many biochemical characterizations of the replication-related proteins have been reported, but it has not been proved that the homologs of each protein are also essential for replication in archaeal cells. Here, we demonstrated that the P. furiosus GINS complex interacts with P. furiosus MCM. A chromatin immunoprecipitation assay revealed that the GINS complex is detected preferentially at the oriC region on Pyrococcus chromosomal DNA during the exponential growth phase but not in the stationary phase. Furthermore, the GINS complex stimulates both the ATPase and DNA helicase activities of MCM in vitro. These results strongly suggest that the archaeal GINS is involved in both the initiation and elongation processes of DNA replication in P. furiosus, as observed in eukaryotic cells.


Genes to Cells | 2006

The archaeal Hjm helicase has recQ‐like functions, and may be involved in repair of stalled replication fork

Ryosuke Fujikane; Hideo Shinagawa; Yoshizumi Ishino

The archaeal Hjm is a structure‐specific DNA helicase, which was originally identified in the hyperthermophilic archaeon, Pyrococcus furiosus, by in vitro screening for Holliday junction migration activity. Further biochemical analyses of the Hjm protein from P. furiosus showed that this protein preferably binds to fork‐related Y‐structured DNAs and unwinds their double‐stranded regions in vitro, just like the E. coli RecQ protein. Furthermore, genetic analyses showed that Hjm produced in E. coli cells partially complemented the defect of functions of RecQ in a recQ mutant E. coli strain. These results suggest that Hjm may be a functional counterpart of RecQ in Archaea, in which it is necessary for the maintenance of genome integrity, although the amino acid sequences are not conserved. The functional interaction of Hjm with PCNA for its helicase activity further suggests that the Hjm works at stalled replication forks, as a member of the reconstituted replisomes to restart replication.


Journal of Biological Chemistry | 2005

Identification of a Novel Helicase Activity Unwinding Branched DNAs from the Hyperthermophilic Archaeon, Pyrococcus furiosus

Ryosuke Fujikane; Kayoko Komori; Hideo Shinagawa; Yoshizumi Ishino

To identify the branch migration activity in archaea, we fractionated Pyrococcus furiosus cell extracts by several chromatography and assayed for ATP-dependent resolution of synthetic Holliday junctions. The target activity was identified in the column fractions, and the optimal reaction conditions for the branch migration activity were determined using the partially purified fraction. We successfully cloned the corresponding gene by screening a heat-stable protein library made by P. furiosus genomic DNA. The gene, hjm (Holliday junction migration), encodes a protein composed of 720 amino acids. The Hjm protein is conserved in Archaea and belongs to the helicase superfamily 2. A homology search revealed that Hjm shares sequence similarity with the human PolΘ, HEL308, and Drosophila Mus308 proteins, which are involved in a DNA repair, whereas no similar sequences were found in bacteria and yeast. The Hjm helicase may play a central role in the repair systems of organisms living in extreme environments.


BMC Structural Biology | 2009

Atomic structures and functional implications of the archaeal RecQ-like helicase Hjm

Takuji Oyama; Hayato Oka; Kouta Mayanagi; Tsuyoshi Shirai; Kyoko Matoba; Ryosuke Fujikane; Yoshizumi Ishino; Kosuke Morikawa

BackgroundPyrococcus furiosus Hjm (Pfu Hjm) is a structure-specific DNA helicase that was originally identified by in vitro screening for Holliday junction migration activity. It belongs to helicase superfamily 2, and shares homology with the human DNA polymerase Θ (PolΘ), HEL308, and Drosophila Mus308 proteins, which are involved in DNA repair. Previous biochemical and genetic analyses revealed that Pfu Hjm preferentially binds to fork-related Y-structured DNAs and unwinds their double-stranded regions, suggesting that this helicase is a functional counterpart of the bacterial RecQ helicase, which is essential for genome maintenance. Elucidation of the DNA unwinding and translocation mechanisms by Pfu Hjm will require its three-dimensional structure at atomic resolution.ResultsWe determined the crystal structures of Pfu Hjm, in two apo-states and two nucleotide bound forms, at resolutions of 2.0–2.7 Å. The overall structures and the local conformations around the nucleotide binding sites are almost the same, including the side-chain conformations, irrespective of the nucleotide-binding states. The architecture of Hjm was similar to that of Archaeoglobus fulgidus Hel308 complexed with DNA. An Hjm-DNA complex model, constructed by fitting the five domains of Hjm onto the corresponding Hel308 domains, indicated that the interaction of Hjm with DNA is similar to that of Hel308. Notably, sulphate ions bound to Hjm lie on the putative DNA binding surfaces. Electron microscopic analysis of an Hjm-DNA complex revealed substantial flexibility of the double stranded region of DNA, presumably due to particularly weak protein-DNA interactions. Our present structures allowed reasonable homology model building of the helicase region of human PolΘ, indicating the strong conformational conservation between archaea and eukarya.ConclusionThe detailed comparison between our DNA-free Pfu Hjm structure and the structure of Hel308 complexed with DNA suggests similar DNA unwinding and translocation mechanisms, which could be generalized to all of the members in the same family. Structural comparison also implied a minor rearrangement of the five domains during DNA unwinding reaction. The unexpected small contact between the DNA duplex region and the enzyme appears to be advantageous for processive helicase activity.


Genes to Cells | 2012

Comparative analyses of the two proliferating cell nuclear antigens from the hyperthermophilic archaeon, Thermococcus kodakarensis

Yumani Kuba; Sonoko Ishino; Takeshi Yamagami; Masahiro Tokuhara; Tamotsu Kanai; Ryosuke Fujikane; Hiromi Daiyasu; Haruyuki Atomi; Yoshizumi Ishino

The DNA sliding clamp is a multifunctional protein involved in cellular DNA transactions. In Archaea and Eukaryota, proliferating cell nuclear antigen (PCNA) is the sliding clamp. The ring‐shaped PCNA encircles double‐stranded DNA within its central hole and tethers other proteins on DNA. The majority of Crenarchaeota, a subdomain of Archaea, have multiple PCNA homologues, and they are capable of forming heterotrimeric rings for their functions. In contrast, most organisms in Euryarchaeota, the other major subdomain, have a single PCNA forming a homotrimeric ring structure. Among the Euryarchaeota whose genome is sequenced, Thermococcus kodakarensis is the only species with two genes encoding PCNA homologues on its genome. We cloned the two genes from the T. kodakarensis genome, and the gene products, PCNA1 and PCNA2, were characterized. PCNA1 stimulated the DNA synthesis reactions of the two DNA polymerases, PolB and PolD, from T. kodakarensis in vitro. PCNA2, however, only had an effect on PolB. We were able to disrupt the gene for PCNA2, whereas gene disruption for PCNA1 was not possible, suggesting that PCNA1 is essential for DNA replication. The sensitivities of the Δpcna2 mutant strain to ultraviolet irradiation (UV), methyl methanesulfonate (MMS) and mitomycin C (MMC) were indistinguishable from those of the wild‐type strain.


DNA Repair | 2012

Activation of AMP-activated protein kinase by MAPO1 and FLCN induces apoptosis triggered by alkylated base mismatch in DNA

Teik How Lim; Ryosuke Fujikane; Shiori Sano; Ryuji Sakagami; Yoshimichi Nakatsu; Teruhisa Tsuzuki; Mutsuo Sekiguchi; Masumi Hidaka

O₆-methylguanine produced in DNA by the action of simple alkylating agents, such as N-methyl-N-nitrosourea (MNU), causes base-mispairing during DNA replication, thus leading to mutations and cancer. To prevent such outcomes, the cells carrying O⁶-methylguanine undergo apoptosis in a mismatch repair protein-dependent manner. We previously identified MAPO1 as one of the components required for the induction of apoptosis triggered by O⁶-methylguanine. MAPO1, also known as FNIP2 and FNIPL, forms a complex with AMP-activated protein kinase (AMPK) and folliculin (FLCN), which is encoded by the BHD tumor suppressor gene. We describe here the involvement of the AMPK-MAPO1-FLCN complex in the signaling pathway of apoptosis induced by O⁶-methylguanine. By the introduction of siRNAs specific for these genes, the transition of cells to a population with sub-G₁ DNA content following MNU treatment was significantly suppressed. After MNU exposure, phosphorylation of AMPKα occurred in an MLH1-dependent manner, and this activation of AMPK was not observed in cells in which the expression of either the Mapo1 or the Flcn gene was downregulated. When cells were treated with AICA-ribose (AICAR), a specific activator of AMPK, activation of AMPK was also observed in a MAPO1- and FLCN-dependent manner, thus leading to cell death which was accompanied by the depolarization of the mitochondrial membrane, a hallmark of the apoptosis induction. It is therefore likely that MAPO1, in its association with FLCN, may regulate the activation of AMPK to control the induction of apoptosis triggered by O⁶-methylguanine.


Trends in Biochemical Sciences | 2009

When DNA replication and protein synthesis come together

Jonathan Berthon; Ryosuke Fujikane; Patrick Forterre

In all organisms, DNA and protein are synthesized by dedicated, but unrelated, machineries that move along distinct templates with no apparent coordination. Therefore, connections between DNA replication and translation are a priori unexpected. However, recent findings support the existence of such connections throughout the three domains of life. In particular, we recently identified in archaeal genomes a conserved association between genes encoding DNA replication and ribosome-related proteins which all have eukaryotic homologs. We believe that this gene organization is biologically relevant and, moreover, that it suggests the existence of a mechanism coupling DNA replication and translation in Archaea and Eukarya.


PLOS ONE | 2012

The Identification of a Novel Gene, MAPO2, That Is Involved in the Induction of Apoptosis Triggered by O6-Methylguanine

Ryosuke Fujikane; Masayuki Sanada; Mutsuo Sekiguchi; Masumi Hidaka

O6-Methylguanine, one of alkylated DNA bases, is especially mutagenic. Cells containing this lesion are eliminated by induction of apoptosis, associated with the function of mismatch repair (MMR) proteins. A retrovirus-mediated gene-trap mutagenesis was used to isolate new genes related to the induction of apoptosis, triggered by the treatment with an alkylating agent, N-methyl-N-nitrosourea (MNU). This report describes the identification of a novel gene, MAPO2 (O6-methylguanine-induced apoptosis 2), which is originally annotated as C1orf201. The MAPO2 gene is conserved among a wide variety of multicellular organisms and encodes a protein containing characteristic PxPxxY repeats. To elucidate the function of the gene product in the apoptosis pathway, a human cell line derived from HeLa MR cells, in which the MAPO2 gene was stably knocked down by expressing specific miRNA, was constructed. The knockdown cells grew at the same rate as HeLa MR, thus indicating that MAPO2 played no role in the cellular growth. After exposure to MNU, HeLa MR cells and the knockdown cells underwent cell cycle arrest at G2/M phase, however, the production of the sub-G1 population in the knockdown cells was significantly suppressed in comparison to that in HeLa MR cells. Moreover, the activation of BAK and caspase-3, and depolarization of mitochondrial membrane, hallmarks for the induction of apoptosis, were also suppressed in the knockdown cells. These results suggest that the MAPO2 gene product might positively contribute to the induction of apoptosis triggered by O6-methylguanine.


Scientific Reports | 2016

Function of high-mobility group A proteins in the DNA damage signaling for the induction of apoptosis

Ryosuke Fujikane; Kayoko Komori; Mutsuo Sekiguchi; Masumi Hidaka

O6-Methylguanine produced in DNA can pair with thymine during DNA replication, thus leading to a G-to-A transition mutation. To prevent such outcomes, cells harboring O6-methylguanine-containing mispair undergo apoptosis that requires the function of mismatch repair (MMR) protein complex. To identify the genes involved in the induction of apoptosis, we performed gene-trap mutagenesis and isolated a clone of mouse cells exhibiting an increased resistance to the killing effect of an alkylating agent, N-methyl-N-nitrosourea (MNU). The mutant carries an insertion in the Hmga2 gene, which belongs to a gene family encoding the high-mobility group A non-histone chromatin proteins. To elucidate the function of HMGA proteins in the apoptosis pathway, we introduced siRNAs for HMGA1 and/or HMGA2 into human HeLa MR cells defective in O6-methylguanine-DNA methyltransferase. HMGA1- and HMGA2-single knockdown cells showed an increased resistance to MNU, and HMGA1/HMGA2-double knockdown cells exhibited further increased tolerance compared to the control. The phosphorylation of ATR and CHK1, the appearance of a sub-G1 population, and caspase-9 activation were suppressed in the knockdown cells, although the formation of mismatch recognition complex was unaffected. These results suggest that HMGA family proteins function at the step following the damage recognition in the process of apoptosis triggered by O6-methylguanine.

Collaboration


Dive into the Ryosuke Fujikane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masumi Hidaka

National Institute for Basic Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge