Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryota Asahara is active.

Publication


Featured researches published by Ryota Asahara.


Journal of Applied Physiology | 2016

The prefrontal oxygenation and ventilatory responses at start of one-legged cycling exercise have relation to central command

Ryota Asahara; Kanji Matsukawa; Kei Ishii; Nan Liang; Kana Endo

When performing exercise arbitrarily, activation of central command should start before the onset of exercise, but when exercise is forced to start with cue, activation of central command should be delayed. We examined whether the in-advance activation of central command influenced the ventilatory response and reflected in the prefrontal oxygenation, by comparing the responses during exercise with arbitrary and cued start. The breath-by-breath respiratory variables and the prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) were measured during one-legged cycling. Minute ventilation (V̇e) at the onset of arbitrary one-legged cycling was augmented to a greater extent than cued cycling, while end-tidal carbon dioxide tension (ETco2) decreased irrespective of arbitrary or cued start. Symmetric increase in the bilateral prefrontal Oxy-Hb occurred before and at the onset of arbitrary one-legged cycling, whereas such an increase was absent with cued start. The time course and magnitude of the increased prefrontal oxygenation were not influenced by the extent of subjective rating of perceived exertion and were the same as those of the prefrontal oxygenation during two-legged cycling previously reported. Mental imagery or passive performance of the one-legged cycling increased V̇e and decreased ETco2 Neither intervention, however, augmented the prefrontal Oxy-Hb. The changes in ETco2 could not explain the prefrontal oxygenation response during voluntary or passive one-legged cycling. Taken together, it is likely that the in-advance activation of central command influenced the ventilatory response by enhancing minute ventilation at the onset of one-legged cycling exercise and reflected in the preexercise increase in the prefrontal oxygenation.


Journal of Applied Physiology | 2016

Central command generated prior to arbitrary motor execution induces muscle vasodilatation at the beginning of dynamic exercise

Kei Ishii; Kanji Matsukawa; Nan Liang; Kana Endo; Mitsuhiro Idesako; Ryota Asahara; Akito Kadowaki; Rie Wakasugi; Makoto Takahashi

The purpose of this study was to examine the role of central command, generated prior to arbitrary motor execution, in cardiovascular and muscle blood flow regulation during exercise. Thirty two subjects performed 30 s of two-legged cycling or 1 min of one-legged cycling (66 ± 4% and 35% of the maximal exercise intensity, respectively), which was started arbitrarily or abruptly by a verbal cue (arbitrary vs. cued start). We measured the cardiovascular variables during both exercises and the relative changes in oxygenated-hemoglobin concentration (Oxy-Hb) of noncontracting vastus lateralis muscles as index of tissue blood flow and femoral blood flow to nonexercising leg during one-legged cycling. Two-legged cycling with arbitrary start caused a decrease in total peripheral resistance (TPR), which was smaller during the exercise with cued start. The greater reduction of TPR with arbitrary start was also recognized at the beginning of one-legged cycling. Oxy-Hb of noncontracting muscle increased by 3.6 ± 1% (P < 0.05) during one-legged cycling with arbitrary start, whereas such increase in Oxy-Hb was absent with cued start. The increases in femoral blood flow and vascular conductance of nonexercising leg were evident (P < 0.05) at 10 s from the onset of one-legged cycling with arbitrary start, whereas those were smaller or absent with cued start. It is likely that when voluntary exercise is started arbitrarily, central command is generated prior to motor execution and then contributes to muscle vasodilatation at the beginning of exercise. Such centrally induced muscle vasodilatation may be weakened and/or masked in the case of exercise with cued start.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2018

Decreased prefrontal oxygenation elicited by stimulation of limb mechanosensitive afferents during cycling exercise

Ryota Asahara; Kanji Matsukawa

Our laboratory reported using near-infrared spectroscopy that feedback from limb mechanoafferents may decrease prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) during the late period of voluntary and passive cycling. To test the hypothesis that the decreased Oxy-Hb of the prefrontal cortex would be augmented depending on the extent of limb mechanoafferent input, the prefrontal Oxy-Hb response was measured during motor-driven one- and two-legged passive cycling for 1 min at various revolutions of pedal movement in 19 subjects. Furthermore, we examined whether calculated tissue oxygenation index (TOI) decreased during passive cycling as the Oxy-Hb did, simultaneously assessing blood flows of extracranial cutaneous tissue and the common and internal carotid arteries (CCA and ICA) with laser and ultrasound Doppler flowmetry. Minute ventilation and cardiac output increased and peripheral resistance decreased during passive cycling, depending on both revolutions of pedal movement and number of limbs, whereas mean arterial blood pressure did not change. Passive cycling did not change end-tidal CO2, suggesting absence of a hypocapnic change. Prefrontal Oxy-Hb decreased during passive cycling, being in proportion to revolution of pedal movement but not number of cycling limbs. In addition, prefrontal TOI decreased during passive cycling as Oxy-Hb did, whereas blood flows of forehead cutaneous tissue, CCA, and ICA did not change significantly. Thus, a decrease in Oxy-Hb reflected a decrease in tissue blood flow of the intracerebral vasculature but not the extracerebral compartment. It is likely that feedback from mechanoafferents decreased regional cerebral blood flow of the prefrontal cortex in relation to the revolutions of pedal movement.


Physiological Reports | 2017

Central command increases muscular oxygenation of the non‐exercising arm at the early period of voluntary one‐armed cranking

Kei Ishii; Kanji Matsukawa; Ryota Asahara; Nan Liang; Kana Endo; Mitsuhiro Idesako; Kensuke Michioka; Yu Sasaki; Hironobu Hamada; Kaori Yamashita; Tae Watanabe; Tsuyoshi Kataoka; Makoto Takahashi

This study aimed to examine whether central command increases oxygenation in non‐contracting arm muscles during contralateral one‐armed cranking and whether the oxygenation response caused by central command differs among skeletal muscles of the non‐exercising upper limb. In 13 male subjects, the relative changes in oxygenated‐hemoglobin concentration (Oxy‐Hb) of the non‐contracting arm muscles [the anterior deltoid, triceps brachii, biceps brachii, and extensor carpi radialis (ECR)] were measured during voluntary one‐armed cranking (intensity, 35–40% of maximal voluntary effort) and mental imagery of the one‐armed exercise for 1 min. Voluntary one‐armed cranking increased (P < 0.05) the Oxy‐Hb of the triceps, biceps, and ECR muscles to the same extent (15 ± 4% of the baseline level, 17 ± 5%, and 16 ± 4%, respectively). The greatest increase in the Oxy‐Hb was observed in the deltoid muscle. Intravenous injection of atropine (10–15 μg/kg) and/or propranolol (0.1 mg/kg) revealed that the increased Oxy‐Hb of the arm muscles consisted of the rapid atropine‐sensitive and delayed propranolol‐sensitive components. Mental imagery of the exercise increased the Oxy‐Hb of the arm muscles. Motor‐driven passive one‐armed cranking had little influence on the Oxy‐Hb of the arm muscles. It is likely that central command plays a role in the initial increase in oxygenation in the non‐contracting arm muscles via sympathetic cholinergic vasodilatation at the early period of one‐armed cranking. The centrally induced increase in oxygenation may not be different among the distal arm muscles but may augment in the deltoid muscle.


Physiological Reports | 2017

Prefrontal oxygenation correlates to the responses in facial skin blood flows during exposure to pleasantly charged movie

Kanji Matsukawa; Kana Endo; Ryota Asahara; Miho Yoshikawa; Shinya Kusunoki; Tomoko Ishida

Our laboratory reported that facial skin blood flow may serve as a sensitive tool to assess an emotional status. Cerebral neural correlates during emotional interventions should be sought in relation to the changes in facial skin blood flow. To test the hypothesis that prefrontal activity has positive relation to the changes in facial skin blood flow during emotionally charged stimulation, we examined the dynamic changes in prefrontal oxygenation (with near‐infrared spectroscopy) and facial skin blood flows (with two‐dimensional laser speckle and Doppler flowmetry) during emotionally charged audiovisual challenges for 2 min (by viewing comedy, landscape, and horror movie) in 14 subjects. Hand skin blood flow and systemic hemodynamics were simultaneously measured. The extents of pleasantness and consciousness for each emotional stimulus were estimated by subjective rating from −5 (the most unpleasant; the most unconscious) to +5 (the most pleasant; the most conscious). Positively charged emotional stimulation (comedy) simultaneously decreased (P < 0.05) prefrontal oxygenation and facial skin blood flow, whereas negatively charged (horror) or neutral (landscape) emotional stimulation did not alter or slightly decreased them. Any of hand skin blood flow and systemic cardiovascular variables did not change significantly during positively charged emotional stimulation. The changes in prefrontal oxygenation had a highly positive correlation with the changes in facial skin blood flow without altering perfusion pressure, and they were inversely correlated with the subjective rating of pleasantness. The reduction in prefrontal oxygenation during positively charged emotional stimulation suggests a decrease in prefrontal neural activity, which may in turn elicit neurally mediated vasoconstriction of facial skin blood vessels.


Journal of Physical Therapy Science | 2016

The thermic response to food intake in persons with thoracic spinal cord injury

Ryota Asahara; Masahiro Yamasaki

[Purpose] To investigate the influence of the level of spinal cord injury on the thermic effect of food intake (TEF) in persons with thoracic spinal cord injury. [Subjects and Methods] Seven male subjects with spinal cord injury (SCI; age, 40 ± 6 years) and six able-bodied subjects (AB; age, 37 ± 8 years) volunteered to participate in the present study. The subjects consumed an identical test meal consisting of 7.9 kcal/kg of body weight. Energy expenditure and plasma norepinephrine concentrations were measured over a 3-hour period. [Results] The adjusted TEF at 60 min was almost the same among the three groups [AB, SCI with high thoracic cord (T5–6) injury (HSCI), and SCI with low thoracic cord (T9–12) injury (LSCI)]. Although the LSCI group had almost the same adjusted TEF at 120 min as the AB group, the adjusted TEF at 120 min of the HSCI group was significantly lower than that of the AB group. The changes in plasma norepinephrine concentration and heart rate in response to food intake were similar among the three groups. [Conclusion] SCI at the T5–6 level results in a lower TEF due to sympathetic decentralization.


Journal of Applied Physiology | 2016

Central command does not suppress baroreflex control of cardiac sympathetic nerve activity at the onset of spontaneous motor activity in the decerebrate cat

Kanji Matsukawa; Kei Ishii; Ryota Asahara; Mitsuhiro Idesako

Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored with tibial nerve activity in paralyzed, decerebrate cats. CSNA exhibited a peak increase (126 ± 17%) immediately after exercise onset, followed by increases in HR and mean arterial pressure (MAP). With development of the pressor response, CSNA and HR decreased near baseline, although spontaneous motor activity was not terminated. Atropine methyl nitrate (0.1-0.2 mg/kg iv) with little central influence delayed the initial increase in HR but did not alter the response magnitudes of HR and CSNA, while atropine augmented the pressor response. The baroreflex-induced decreases in CSNA and HR elicited by brief occlusion of the abdominal aorta were challenged at the onset of spontaneous motor activity. Spontaneous motor activity blunted the baroreflex reduction in HR by aortic occlusion but did not alter the baroreflex inhibition of CSNA. Similarly, atropine abolished the baroreflex reduction in HR but did not influence the baroreflex inhibition of CSNA. Thus it is likely that central command increases CSNA and decreases cardiac vagal outflow at the onset of spontaneous motor activity while preserving baroreflex control of CSNA. Accordingly, central command must attenuate cardiovagal baroreflex sensitivity against an excess rise in MAP as estimated from the effect of muscarinic blockade.


The Journal of Physiology | 2018

Feedforward‐ and motor effort‐dependent increase in prefrontal oxygenation during voluntary one‐armed cranking

Kei Ishii; Nan Liang; Ryota Asahara; Makoto Takahashi; Kanji Matsukawa

Some cortical areas are believed to transmit a descending signal in association with motor intention and/or effort that regulates the cardiovascular system during exercise (termed central command). However, there was no evidence for the specific cortical area responding prior to arbitrary motor execution and in proportion to the motor effort. Using a multichannel near‐infrared spectroscopy system, we found that the oxygenation of the dorsolateral and ventrolateral prefrontal cortices on the right side increases in a feedforward‐ and motor effort‐dependent manner during voluntary one‐armed cranking with the right arm. This finding may suggest a role of the dorsolateral and ventrolateral prefrontal cortices in triggering off central command and may help us to understand impaired regulation of the cardiovascular system in association with lesion of the prefrontal cortex.


Scientific Reports | 2018

Deactivation of the prefrontal cortex during exposure to pleasantly-charged emotional challenge

Kanji Matsukawa; Ryota Asahara; Miho Yoshikawa; Kana Endo

Our laboratory reported that facial skin blood flow may serve as a sensitive tool to assess an emotional status and that both prefrontal oxygenation (as index of regional cerebral blood flow) and facial skin blood flow decrease during positively-charged emotional stimulation, without changing hand skin blood flow and arterial pressure. However, the focal location of the prefrontal responses in concentration of oxygenated haemoglobin (Oxy-Hb) that correlate with peripheral autonomic reaction remained unknown. This study was undertaken using 22-channel near-infrared spectroscopy to reveal spatial distribution of the responses in Oxy-Hb within the prefrontal cortex (PFC) during emotionally-charged audiovisual stimulation. Pleasantly-charged (comedy) stimulation caused a substantial decrease of Oxy-Hb in all regions of the PFC in 18 subjects, especially in the rostroventral frontopolar PFC, whereas negatively-charged (horror) or neutral stimulation (landscape) exhibited a weaker decrease or insignificant change in the prefrontal Oxy-Hb. In the rostral parts of the dorsolateral and ventral frontopolar PFC, the oxygenation response during comedy stimulation exhibited the most significant positive correlation with the decrease in facial skin blood flow. Thus the rostral regions of the PFC play a role in recognition and regulation of positive emotion and may be linked with neurally-mediated vasoconstriction of facial skin blood vessels.


European Journal of Applied Physiology | 2018

An increase in prefrontal oxygenation at the start of voluntary cycling exercise was observed independently of exercise effort and muscle mass

Ryota Asahara; Kana Endo; Nan Liang; Kanji Matsukawa

Collaboration


Dive into the Ryota Asahara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge