Ryskul Oinarov
L.N.Gumilyov Eurasian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ryskul Oinarov.
Journal of Inequalities and Applications | 2012
Ryskul Oinarov; Zhanar Taspaganbetova
The aim of this article is to obtain criteria of boundedness and compactness for a wide class of matrix operators from one weighted lp,v space of sequences to another weighted lq,u space, in the case 1 < p ≤ q < ∞. We introduce a general class of matrices. Then we establish necessary and sufficient conditions for the boundedness and compactness of the operators (A+f)i:=∑j=1iai,jfj, i ≥ 1 and (A-f)j:=∑i=j∞ai,jfi, j ≥ 1 corresponding to matrices in such classes by using the method of localization. Our classes are more general than those for which corresponding Hardy inequalities are known in the literature.2010 Mathematics Subject Classification: 26D15; 47B37.
Journal of Function Spaces and Applications | 2013
Aigerim Kalybay; Ryskul Oinarov; Ainur Temirkhanova
We find necessary and sufficient conditions on weighted sequences , , , and , for which the operator is bounded from to for .
Journal of Inequalities and Applications | 2018
Lars-Erik Persson; Ryskul Oinarov; Serikbol Shaimardan
AbstractThe first power weighted version of Hardy’s inequality can be rewritten as ∫0∞(xα−1∫0x1tαf(t)dt)pdx≤[pp−α−1]p∫0∞fp(x)dx,f≥0,p≥1,α<p−1,
Journal of Inequalities and Applications | 2013
Alois Kufner; Komil Kuliev; Ryskul Oinarov
Advances in harmonic analysis and operator theory, 2013, ISBN 978-3-0348-0515-5, págs. 77-89 | 2013
Larissa Arendarenko; Ryskul Oinarov; Lars-Erik Persson
\int _{0}^{\infty } \biggl( x^{\alpha -1} \int _{0}^{x} \frac{1}{t ^{\alpha }}f(t)\,dt \biggr) ^{p}\,dx\leq \biggl[ \frac{p}{p-\alpha -1} \biggr] ^{p} \int _{0}^{\infty }f^{p}(x)\,dx,\quad f\geq 0,p\geq 1, \alpha < p-1,
Mathematical Inequalities & Applications | 2013
Victor Burenkov; Ryskul Oinarov
Czechoslovak Mathematical Journal | 2014
Lech Maligranda; Ryskul Oinarov; Lars-Erik Persson
where the constant C=[pp−α−1]p
Mathematical Inequalities & Applications | 2009
Ryskul Oinarov; Lars-Erik Persson; Ainur Temirkhanova
C= [ \frac{p}{p-\alpha -1} ] ^{p}
Mathematical Inequalities & Applications | 2007
Ryskul Oinarov; Christopher A. Okpoti; Lars-Erik Persson
is sharp. This inequality holds in the reversed direction when 0≤p<1
Mathematical Inequalities & Applications | 2003
Ryskul Oinarov
0\leq p<1