Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryu Uemura is active.

Publication


Featured researches published by Ryu Uemura.


Nature | 2007

Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years.

Kenji Kawamura; Frédéric Parrenin; Lorraine E. Lisiecki; Ryu Uemura; Françoise Vimeux; Jeffrey P. Severinghaus; Manuel A. Hutterli; Takakiyo Nakazawa; Shuji Aoki; Jean Jouzel; Maureen E. Raymo; Koji Matsumoto; Hisakazu Nakata; Hideaki Motoyama; Shuji Fujita; Kumiko Goto-Azuma; Yoshiyuki Fujii; Okitsugu Watanabe

The Milankovitch theory of climate change proposes that glacial–interglacial cycles are driven by changes in summer insolation at high northern latitudes. The timing of climate change in the Southern Hemisphere at glacial–interglacial transitions (which are known as terminations) relative to variations in summer insolation in the Northern Hemisphere is an important test of this hypothesis. So far, it has only been possible to apply this test to the most recent termination, because the dating uncertainty associated with older terminations is too large to allow phase relationships to be determined. Here we present a new chronology of Antarctic climate change over the past 360,000 years that is based on the ratio of oxygen to nitrogen molecules in air trapped in the Dome Fuji and Vostok ice cores. This ratio is a proxy for local summer insolation, and thus allows the chronology to be constructed by orbital tuning without the need to assume a lag between a climate record and an orbital parameter. The accuracy of the chronology allows us to examine the phase relationships between climate records from the ice cores and changes in insolation. Our results indicate that orbital-scale Antarctic climate change lags Northern Hemisphere insolation by a few millennia, and that the increases in Antarctic temperature and atmospheric carbon dioxide concentration during the last four terminations occurred within the rising phase of Northern Hemisphere summer insolation. These results support the Milankovitch theory that Northern Hemisphere summer insolation triggered the last four deglaciations.


Journal of Climate | 2008

A Review of Antarctic Surface Snow Isotopic Composition: Observations, Atmospheric Circulation, and Isotopic Modeling*

Valerie Masson-Delmotte; Shugui Hou; Alexey Ekaykin; Jean Jouzel; Alberto J. Aristarain; Ronaldo T. Bernardo; David H. Bromwich; Olivier Cattani; Marc Delmotte; S. Falourd; Massimo Frezzotti; L. Genoni; Elisabeth Isaksson; Amaelle Landais; Michiel M. Helsen; Gundula Hoffmann; J. Lopez; Vin Morgan; Hideaki Motoyama; David Noone; H. Oerter; J. R. Petit; A. Royer; Ryu Uemura; Gavin A. Schmidt; Elisabeth Schlosser; Jefferson Cardia Simões; Eric J. Steig; Barbara Stenni; M. Stievenard

A database of surface Antarctic snow isotopic composition is constructed using available measurements, with an estimate of data quality and local variability. Although more than 1000 locations are documented, the spatial coverage remains uneven with a majority of sites located in specific areas of East Antarctica. The database is used to analyze the spatial variations in snow isotopic composition with respect to geographical characteristics (elevation, distance to the coast) and climatic features (temperature, accumulation) and with a focus on deuterium excess. The capacity of theoretical isotopic, regional, and general circulation atmospheric models (including “isotopic” models) to reproduce the observed features and assess the role of moisture advection in spatial deuterium excess fluctuations is analyzed.


Journal of Geophysical Research | 2012

Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations

Camille Risi; David Noone; John R. Worden; Christian Frankenberg; Gabriele P. Stiller; Michael Kiefer; B. Funke; Kaley A. Walker; Peter F. Bernath; Matthias Schneider; Debra Wunch; Vanessa Sherlock; Nicholas M Deutscher; David W. T. Griffith; Paul O. Wennberg; Kimberly Strong; Dan Smale; Emmanuel Mahieu; Sabine Barthlott; Frank Hase; O. E. García; Justus Notholt; Thorsten Warneke; Geoffrey C. Toon; David Stuart Sayres; Sandrine Bony; Jeonghoon Lee; Derek Brown; Ryu Uemura; Christophe Sturm

The goal of this study is to determine how H2O and HDO measurements in water vapor can be used to detect and diagnose biases in the representation of processes controlling tropospheric humidity in atmospheric general circulation models (GCMs). We analyze a large number of isotopic data sets (four satellite, sixteen ground-based remote-sensing, five surface in situ and three aircraft data sets) that are sensitive to different altitudes throughout the free troposphere. Despite significant differences between data sets, we identify some observed HDO/H2O characteristics that are robust across data sets and that can be used to evaluate models. We evaluate the isotopic GCM LMDZ, accounting for the effects of spatiotemporal sampling and instrument sensitivity. We find that LMDZ reproduces the spatial patterns in the lower and mid troposphere remarkably well. However, it underestimates the amplitude of seasonal variations in isotopic composition at all levels in the subtropics and in midlatitudes, and this bias is consistent across all data sets. LMDZ also underestimates the observed meridional isotopic gradient and the contrast between dry and convective tropical regions compared to satellite data sets. Comparison with six other isotope-enabled GCMs from the SWING2 project shows that biases exhibited by LMDZ are common to all models. The SWING2 GCMs show a very large spread in isotopic behavior that is not obviously related to that of humidity, suggesting water vapor isotopic measurements could be used to expose model shortcomings. In a companion paper, the isotopic differences between models are interpreted in terms of biases in the representation of processes controlling humidity. Copyright


Geophysical Research Letters | 2010

Triple isotope composition of oxygen in atmospheric water vapor

Ryu Uemura; Eugeni Barkan; Osamu Abe; Boaz Luz

[1] Recently, an excess of 17 O ( 17 O-excess) has been demonstrated in meteoric water and ice cores. Based on theory and experiments, it has been suggested that this excess originates from evaporation of ocean water into under-saturated air. However, there has never been direct demonstration of this excess in marine vapor. Here, we present results of the first measurements of δ 17 O and δ 18 O in vapor samples collected over the South Indian and the Southern Oceans. Our data show the existence of 17 O-excess in marine vapor and also clear negative correlation between 17 O-excess and relative humidity. Thus, 17 O-excess is useful for constraining oceanic humidity in hydrological and climatic models. Using the obtained values of 17 O-excess, we estimated the fractionation factor between H 18 2 O and H 16 2 O for diffusion in air above the ocean ( 18 α diff ). The new estimation of 18 α diff (1.008) is larger than the widely accepted value in hydrological studies.


Annals of Glaciology | 2002

High net accumulation rates at Campo de Hielo Patago´nico Sur, South America, revealed by analysis of a 45.97 m long ice core

Takayuki Shiraiwa; Shiro Kohshima; Ryu Uemura; Naohiro Yoshida; Sumito Matoba; Jun Uetake; María Angélica Godoi

Abstract A 45.97 m long ice core was recovered in the accumulation area of Glaciar Tyndall (50˚59’05’’ S, 73˚31’12’’W; 1756ma.s.l.), Campo de Hielo Patagόnico Sur (southern Patagonia icefield), during December 1999. the firn core was subjected to visual stratigraphic observation and bulk density measurements in the field, and later to analyses of water isotopes (δ18O, δD), major dissolved ions and snow algal biomass. the drillhole remained dry down to about 43 m depth, where a water-soaked layer appeared. Seasonal cycles were found for δ18O, δD and the D-excess, although the amplitudes of the cycles decreased with depth. Major dissolved ions (Na+, K+, Mg2+, Ca2+, Cl–, SO4 2–) and algal biomass exhibit rapid decreases in the upper 3 m, probably due to meltwater elution. Annual increments defined by the δ18O and D-excess peaks suggest that the minimum net accumulation rates at this location were 17.8ma–1 in 1997/98–1998/99 and 411.0 ma–1 in 1998/99–1999/2000. These are much higher values than those previously obtained from past ice-core studies in Patagonia, but are of the same order of magnitude as those predicted from various observations in ablation areas of Patagonian glaciers.


Scientific Data | 2017

A global multiproxy database for temperature reconstructions of the Common Era

Julien Emile-Geay; Nicholas P. McKay; Darrell S. Kaufman; Lucien von Gunten; Jianghao Wang; Nerilie J. Abram; Jason A. Addison; Mark A. J. Curran; Michael N. Evans; Benjamin J. Henley; Zhixin Hao; Belen Martrat; Helen V. McGregor; Raphael Neukom; Gregory T. Pederson; Barbara Stenni; Kaustubh Thirumalai; Johannes P. Werner; Chenxi Xu; Dmitry Divine; Bronwyn C. Dixon; Joëlle Gergis; Ignacio A. Mundo; Takeshi Nakatsuka; Steven J. Phipps; Cody C. Routson; Eric J. Steig; Jessica E. Tierney; Jonathan J. Tyler; Kathryn Allen

Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.


Nature | 2012

Sulphate–climate coupling over the past 300,000 years in inland Antarctica

Yoshinori Iizuka; Ryu Uemura; Hideaki Motoyama; Toshitaka Suzuki; Takayuki Miyake; Motohiro Hirabayashi; Takeo Hondoh

Sulphate aerosols, particularly micrometre-sized particles of sulphate salt and sulphate-adhered dust, can act as cloud condensation nuclei, leading to increased solar scattering that cools Earth’s climate. Evidence for such a coupling may lie in the sulphate record from polar ice cores, but previous analyses of melted ice-core samples have provided only sulphate ion concentrations, which may be due to sulphuric acid. Here we present profiles of sulphate salt and sulphate-adhered dust fluxes over the past 300,000 years from the Dome Fuji ice core in inland Antarctica. Our results show a nearly constant flux of sulphate-adhered dust through glacial and interglacial periods despite the large increases in total dust flux during glacial maxima. The sulphate salt flux, however, correlates inversely with temperature, suggesting a climatic coupling between particulate sulphur and temperature. For example, the total sulphate salt flux during the Last Glacial Maximum averages 5.78 mg m−2 yr−1, which is almost twice the Holocene value. Although it is based on a modern analogue with considerable uncertainties when applied to the ice-core record, this analysis indicates that the glacial-to-interglacial decrease in sulphate would lessen the aerosol indirect effects on cloud lifetime and albedo, leading to an Antarctic warming of 0.1 to 5 kelvin.


Science Advances | 2017

State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling

Kenji Kawamura; Ayako Abe-Ouchi; Hideaki Motoyama; Yutaka Ageta; Shuji Aoki; Nobuhiko Azuma; Yoshiyuki Fujii; Koji Fujita; Shuji Fujita; Kotaro Fukui; Teruo Furukawa; Atsushi Furusaki; Kumiko Goto-Azuma; Ralf Greve; Motohiro Hirabayashi; Takeo Hondoh; Akira Hori; Shinichiro Horikawa; Kazuho Horiuchi; Makoto Igarashi; Yoshinori Iizuka; Takao Kameda; Hiroshi Kanda; Mika Kohno; Takayuki Kuramoto; Yuki Matsushi; Morihiro Miyahara; Takayuki Miyake; Atsushi Miyamoto; Yasuo Nagashima

Global cooling in intermediate glacial climate with northern ice sheets preconditions climatic instability with bipolar seesaw. Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets.


Bioscience, Biotechnology, and Biochemistry | 2005

Botanical and geographical origin identification of industrial ethanol by stable isotope analyses of C, H, and O.

Keiko Ishida-Fujii; Shingo Goto; Ryu Uemura; Keita Yamada; Michikatsu Sato; Naohiro Yoshida

The isotope ratios of carbon, hydrogen, and oxygen of rectified alcohols were determined to distinguish their botanical and geographical origins by continuous flow-isotope ratio mass spectrometry (CF-IRMS). The 13C/12C and 18O/16O ratios of 27 fermented alcohols with known origins showed clusters derived from each botanical origin, viz. corn, sugarcane, wheat, and tapioca. C3 and C4 plants were easily distinguishable by the 13C/12C ratio. Sugarcane and corn are both C4 plants, and they showed small differences in isotope ratios. The combination plots of the D/H and 18O/16O ratios enabled us to designate the geographical origins of alcohol derived from the same kind of crop, such as Chinese or American corn. The chemically synthetic and fermented alcohols were clearly distinguished by D/H and 18O/16O ratios. Isotope ratios were useful for origin identification of alcohol. We plan to construct a database of alcohol isotope ratios to determine the origins of raw materials in alcohol.


Journal of Geophysical Research | 2014

Chemical compositions of sulfate and chloride salts over the last termination reconstructed from the Dome Fuji ice core, inland Antarctica

Ikumi Oyabu; Yoshinori Iizuka; Ryu Uemura; Takayuki Miyake; Motohiro Hirabayashi; Hideaki Motoyama; Toshimitsu Sakurai; Toshitaka Suzuki; Takeo Hondoh

The flux and chemical composition of aerosols impact the climate. Antarctic ice cores preserve the record of past atmospheric aerosols, providing useful information about past atmospheric environments. However, few studies have directly measured the chemical composition of aerosol particles preserved in ice cores. Here we present the chemical compositions of sulfate and chloride salts from aerosol particles in the Dome Fuji ice core. The analysis method involves ice sublimation, and the period covers the last termination, 25.0–11.0 thousand years before present (kyr B.P.), with a 350 year resolution. The major components of the soluble particles are CaSO4, Na2SO4, and NaCl. The dominant sulfate salt changes at 16.8 kyr B.P. from CaSO4, a glacial type, to Na2SO4, an interglacial type. The sulfate salt flux (CaSO4 plus Na2SO4) inversely correlates with δ18O in Dome Fuji over millennial timescales. This correlation is consistent with the idea that sulfate salt aerosols contributed to the last deglacial warming of inland Antarctica by reducing the aerosol indirect effect. Between 16.3 and 11.0 kyr B.P., the presence of NaCl suggests that winter atmospheric aerosols are preserved. A high NaCl/Na2SO4 fraction between 12.3 and 11.0 kyr B.P. indicates that the contribution from the transport of winter atmospheric aerosols increased during this period.

Collaboration


Dive into the Ryu Uemura's collaboration.

Top Co-Authors

Avatar

Hideaki Motoyama

National Institute of Polar Research

View shared research outputs
Top Co-Authors

Avatar

Naohiro Yoshida

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yoshinori Iizuka

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Motohiro Hirabayashi

National Institute of Polar Research

View shared research outputs
Top Co-Authors

Avatar

Shuji Fujita

National Institute of Polar Research

View shared research outputs
Top Co-Authors

Avatar

Barbara Stenni

Ca' Foscari University of Venice

View shared research outputs
Top Co-Authors

Avatar

Kenji Kawamura

National Institute of Polar Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kotaro Fukui

National Institute of Polar Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge