Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryuichi Hishida is active.

Publication


Featured researches published by Ryuichi Hishida.


The Journal of Physiology | 2003

Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence

Katsuei Shibuki; Ryuichi Hishida; Hiroatsu Murakami; Masaharu Kudoh; Tadashi Kawaguchi; Masatoshi Watanabe; Shunsuke Watanabe; Takeshi Kouuchi; Ryuichi Tanaka

We used autofluorescence of mitochondrial flavoproteins to image cortical neural activity in the rat. Green autofluorescence in blue light was examined in slices obtained from rat cerebral cortex. About half of the basal autofluorescence was modulated by the presence or absence of O2 or glucose in the medium. Repetitive electrical stimulation at 20 Hz for 1 s produced a localized fluorescence increase in the slices. The amplitude of the increase was 27 ± 2 % (mean ±s.d., n= 35). Tetrodotoxin or diphenyleneiodonium, an inhibitor of flavoproteins, blocked the autofluorescence responses. The autofluorescence responses were not observed in slices perfused with calcium‐, glucose‐ or O2‐free medium. In the primary somatosensory cortex of rats anaesthetized with urethane (1.5 g kg−1, i.p.), an activity‐dependent increase in autofluorescence of 20 ± 4 % (n= 6) was observed after electrical cortical stimulation at 100 Hz for 1 s, and an increase of 2.6 ± 0.5 % (n= 33) after vibratory skin stimulation at 50 Hz for 1 s applied to the plantar hindpaw. These responses were large enough to allow visualization of the neural activity without having to average a number of trials. The distribution of the fluorescence responses after electrical or vibratory skin stimulation was comparable to that of the cortical field potentials in the same rats. The fluorescence responses were followed by an increase in arterial blood flow. The former were resistant to an inhibitor of nitric oxide synthase, while the latter was inhibited. Thus, activity‐dependent changes in the autofluorescence of flavoproteins are useful for functional brain imaging in vivo.


European Journal of Neuroscience | 2006

Transcranial fluorescence imaging of auditory cortical plasticity regulated by acoustic environments in mice

Kuniyuki Takahashi; Ryuichi Hishida; Yamato Kubota; Masaharu Kudoh; Sugata Takahashi; Katsuei Shibuki

Functional brain imaging using endogenous fluorescence of mitochondrial flavoprotein is useful for investigating mouse cortical activities via the intact skull, which is thin and sufficiently transparent in mice. We applied this method to investigate auditory cortical plasticity regulated by acoustic environments. Normal mice of the C57BL/6 strain, reared in various acoustic environments for at least 4 weeks after birth, were anaesthetized with urethane (1.7 g/kg, i.p.). Auditory cortical images of endogenous green fluorescence in blue light were recorded by a cooled CCD camera via the intact skull. Cortical responses elicited by tonal stimuli (5, 10 and 20 kHz) exhibited mirror‐symmetrical tonotopic maps in the primary auditory cortex (AI) and anterior auditory field (AAF). Depression of auditory cortical responses regarding response duration was observed in sound‐deprived mice compared with naïve mice reared in a normal acoustic environment. When mice were exposed to an environmental tonal stimulus at 10 kHz for more than 4 weeks after birth, the cortical responses were potentiated in a frequency‐specific manner in respect to peak amplitude of the responses in AI, but not for the size of the responsive areas. Changes in AAF were less clear than those in AI. To determine the modified synapses by acoustic environments, neural responses in cortical slices were investigated with endogenous fluorescence imaging. The vertical thickness of responsive areas after supragranular electrical stimulation was significantly reduced in the slices obtained from sound‐deprived mice. These results suggest that acoustic environments regulate the development of vertical intracortical circuits in the mouse auditory cortex.


European Journal of Neuroscience | 2004

Short-term plasticity visualized with flavoprotein autofluorescence in the somatosensory cortex of anaesthetized rats

Hiroatsu Murakami; Daiki Kamatani; Ryuichi Hishida; Tetsuro Takao; Masaharu Kudoh; Tadashi Kawaguchi; Ryuichi Tanaka; Katsuei Shibuki

In the present study, short‐term plasticity of somatosensory neural responses was investigated using flavoprotein autofluorescence imaging in rats anaesthetized with urethane (1.5 g/kg, i.p.) Somatosensory neural activity was elicited by vibratory skin stimulation (50 Hz for 1 s) applied on the surface of the left plantar hindpaw. Changes in green autofluorescence (λ = 500–550 nm) in blue light (λ = 450–490 nm) were elicited in the right somatosensory cortex. The normalised maximal fluorescence responses (ΔF/F) was 2.0 ± 0.1% (n = 40). After tetanic cortical stimulation (TS), applied at a depth of 1.5–2.0 mm from the cortical surface, the responses elicited by peripheral stimulation were significantly potentiated in both peak amplitude and size of the responsive area (both P < 0.02; Wilcoxon signed rank test). This potentiation was clearly observed in the recording session started 5 min after the cessation of TS, and returned to the control level within 30 min. However, depression of the responses was observed after TS applied at a depth of 0.5 mm. TS‐induced changes in supragranular field potentials in cortical slices showed a similar dependence on the depth of the stimulated sites. When TS was applied on the ipsilateral somatosensory cortex, marked potentiation of the ipsilateral responses and slight potentiation of the contralateral responses to peripheral stimulation were observed after TS, suggesting the involvement of commissural fibers in the changes in the somatosensory brain maps. The present study clearly demonstrates that functional brain imaging using flavoprotein autofluorescence is a useful technique for investigating neural plasticity in vivo.


Neuroscience Research | 2008

Transcranial photo-inactivation of neural activities in the mouse auditory cortex.

Yamato Kubota; Daiki Kamatani; Hiroaki Tsukano; Shinsuke Ohshima; Kuniyuki Takahashi; Ryuichi Hishida; Masaharu Kudoh; Sugata Takahashi; Katsuei Shibuki

Flavoprotein fluorescence in the brain is intimately coupled with neuronal aerobic energy metabolism. If flavoproteins are photobleached, neural activities may be affected owing to dysfunction in aerobic energy metabolism in mitochondria. We tested this possibility in cortical slices from mice, and found that exposure to blue light (lambda = 475 nm) derived from a 20 mW diode laser for 50 min suppresses trans-synaptic components of field potentials. This finding formed the basis of a transcranial photo-inactivation technique, that was used to investigate auditory signal transmission between the anterior auditory field (AAF) and the primary auditory cortex (AI) in anesthetized mice. Cortical responses in AAF and AI, elicited by 5 kHz tonal stimuli, were visualized using transcranial flavoprotein fluorescence imaging. After determining responsive areas in AAF and AI, the auditory cortex was exposed to the blue diode laser via the intact skull, while either AAF or AI was protected with a piece of carbon paper. Although the photo-inactivation of AI had no significant effect on the fluorescence responses in AAF, the photo-inactivation of AAF significantly reduced the fluorescence responses in AI, indicating the presence of auditory signal transmission from AAF to AI.


Journal of Neurochemistry | 2009

Transcranial flavoprotein fluorescence imaging of mouse cortical activity and plasticity

Manavu Tohmi; Kuniyuki Takahashi; Yamato Kubota; Ryuichi Hishida; Katsuei Shibuki

Endogenous fluorescence signals derived from mitochondria reflect activity‐dependent changes in brain metabolism and may be exploited in functional brain imaging. Endogenous flavoprotein fluorescence imaging in mice is especially important because many genetically manipulated strains of mice are available and the transparent skull of mice allows transcranial fluorescence imaging of cortical activities. In the primary sensory areas of mice, cortical activities and experience‐dependent plasticity have been investigated using transcranial fluorescence imaging. Furthermore, differential imaging, based on stimulus specificity of cortical areas, distinguished activities in higher visual areas around the primary visual cortex from those in primary visual cortex. The combination of transcranial fluorescence imaging with the suppression of cortical activities using photobleaching of flavoproteins is expected to aid in elucidating the roles of sensory cortices including higher areas in mice.


Cell Reports | 2013

Visual Map Shifts based on Whisker-Guided Cues in the Young Mouse Visual Cortex

Kohei Yoshitake; Hiroaki Tsukano; Manavu Tohmi; Seiji Komagata; Ryuichi Hishida; Takeshi Yagi; Katsuei Shibuki

Mice navigate nearby space using their vision and whiskers, and young mice learn to integrate these heterogeneous inputs in perceptual space. We found that cortical responses were depressed in the primary visual cortex of young mice after wearing a monocular prism. This depression was uniformly observed in the primary visual cortex and was eliminated by whisker trimming or lesions in the posterior parietal cortex. Compensatory visual map shifts of responses elicited via the eye that had worn the prism were also observed. As a result, cortical responses elicited via each eye were clearly separated when a visual stimulus was placed in front of the mice. A comparison of response areas before and after prism wearing indicated that the map shifts were produced by depression with spatial eccentricity. Visual map shifts based on whisker-guided cues may serve as a model for investigating the cellular and molecular mechanisms underlying higher sensory integration in the mammalian brain.


PLOS ONE | 2013

Auditory cortical areas activated by slow frequency-modulated sounds in mice

Yuusuke Honma; Hiroaki Tsukano; Masao Horie; Shinsuke Ohshima; Manavu Tohmi; Yamato Kubota; Kuniyuki Takahashi; Ryuichi Hishida; Sugata Takahashi; Katsuei Shibuki

Species-specific vocalizations in mice have frequency-modulated (FM) components slower than the lower limit of FM direction selectivity in the core region of the mouse auditory cortex. To identify cortical areas selective to slow frequency modulation, we investigated tonal responses in the mouse auditory cortex using transcranial flavoprotein fluorescence imaging. For differentiating responses to frequency modulation from those to stimuli at constant frequencies, we focused on transient fluorescence changes after direction reversal of temporally repeated and superimposed FM sweeps. We found that the ultrasonic field (UF) in the belt cortical region selectively responded to the direction reversal. The dorsoposterior field (DP) also responded weakly to the reversal. Regarding the responses in UF, no apparent tonotopic map was found, and the right UF responses were significantly larger in amplitude than the left UF responses. The half-max latency in responses to FM sweeps was shorter in UF compared with that in the primary auditory cortex (A1) or anterior auditory field (AAF). Tracer injection experiments in the functionally identified UF and DP confirmed that these two areas receive afferent inputs from the dorsal part of the medial geniculate nucleus (MG). Calcium imaging of UF neurons stained with fura-2 were performed using a two-photon microscope, and the presence of UF neurons that were selective to both direction and direction reversal of slow frequency modulation was demonstrated. These results strongly suggest a role for UF, and possibly DP, as cortical areas specialized for processing slow frequency modulation in mice.


Neuroscience Research | 2003

Anisotropic functional connections between the auditory cortex and area 18a in rat cerebral slices

Ryuichi Hishida; Kaeko Hoshino; Masaharu Kudoh; Masao Norita; Katsuei Shibuki

We developed a new method to visualize the myeloarchitecture in fresh slices, and investigated the properties of the functional neural connections around the boundary between the primary auditory cortex (area 41) and area 18a in rat cerebral slices. A fresh slice illuminated by near-vertical light was observed with a CCD camera. The translucent images of the slice showed contrast patterns very similar to myeloarchitecture. The boundary between these areas was identified by the well-developed layer IV/V in area 41 but not in area 18a. Antidromic/presynaptic components of the field potentials stimulated and recorded across the areal boundary showed symmetric distribution, while the postsynaptic field potentials in the direction from area 41 to 18a were more prominent than those in the opposite direction in layer II/III. In contrast, the dominant direction of propagation of postsynaptic potentials was from area 18a to 41 in layer V. In the presence of 1 microM bicuculline, an inhibitor of GABA(A) receptors, the polysynaptic activities propagating from area 18a into 41 via layer V were elicited by stimulation of area 18a. The propagation measured by Ca(2+) imaging or field potential recordings was potentiated after both areas 18a and 41 were alternately stimulated several times.


Neuroscience Research | 2013

Dual compartments of the ventral division of the medial geniculate body projecting to the core region of the auditory cortex in C57BL/6 mice

Masao Horie; Hiroaki Tsukano; Ryuichi Hishida; Hirohide Takebayashi; Katsuei Shibuki

We investigated precise projection patterns from the ventral division of the medial geniculate body (MGv) projecting to the core region of the auditory cortex in C57BL/6 mice. The core region in mice comprises two different tonotopically organized areas, the anterior auditory field (AAF) and the primary auditory cortex (AI). In the present study, AAF and AI were functionally identified using flavoprotein fluorescence imaging. Biotinylated dextran amine (BDA) was injected iontophoretically into the tonotopic bands to 5kHz and 20kHz in AAF, and those to 5kHz, 10kHz, and 20kHz in AI for staining MGv neurons projecting to the injected sites. MGv neurons projecting to AAF were found in the medial part of MGv, while MGv neurons projecting to AI were found in the lateral part. In the medial part of MGv, areas projecting to 5-20kHz bands in AAF were aligned along the medio lateral axis. In the lateral part of MGv, areas projecting to 5-20kHz bands in AI were aligned along the dorso ventral axis. These results indicate that AAF and AI receive auditory information via two different MGv compartments with independent tonotopic axes, respectively.


NeuroImage | 2006

Endogenous fluorescence imaging of somatosensory cortical activities after discrimination learning in rats

Katsuei Shibuki; Kentaro Ono; Ryuichi Hishida; Masaharu Kudoh

Aerobic energy metabolism in the brain is reflected as changes in the green fluorescence of mitochondrial flavoproteins, and the activity-dependent changes in endogenous fluorescence are applicable for functional brain imaging. To understand the roles of cortical plasticity in discrimination learning, we used flavoprotein fluorescence imaging to visualize changes of neural activities in the rat primary somatosensory cortex (SI) after learning. Rats were trained to discriminate floor vibration at rewarded and unrewarded frequencies. After this discrimination learning was accomplished in 3-5 days, the rats were anesthetized with urethane (1.5 g/kg, i.p.), and neural responses were recorded in SI during flutter stimuli applied to the contralateral hindpaw. The fluorescence responses to the stimuli at unrewarded frequencies were selectively depressed in the trained rats, which had behaviorally neglected unrewarded stimuli. The depression of cortical responses was not observed in the rats trained with rewarded stimuli only. Therefore, the stimulus-specific depression in SI might explain a part of neural mechanisms underlying discrimination behavior. To reproduce the stimulus-specific depression of cortical responses in anesthetized rats, tetanic cortical stimulation was paired with flutter stimulation applied to the hindpaw. Selective depression of fluorescence responses or field potentials in SI was induced by the paired stimulation. Our findings suggest that some intracortical circuits in SI are specifically tuned to and modulated by unrewarded stimuli of a particular frequency while SI neurons are responsive to both of rewarded and unrewarded stimuli. The present results indicate the usefulness of flavoprotein fluorescence imaging for investigating somatosensory cortical plasticity after learning.

Collaboration


Dive into the Ryuichi Hishida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge