Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryuichi Okada is active.

Publication


Featured researches published by Ryuichi Okada.


The Journal of Neuroscience | 2007

Learning-Related Plasticity in PE1 and Other Mushroom Body-Extrinsic Neurons in the Honeybee Brain

Ryuichi Okada; Jiirgen Rybak; Gisela Manz; Randolf Menzel

Extracellular recording were performed from mushroom body-extrinsic neurons while the animal was exposed to differential conditioning to two odors, the forward-paired conditioned stimulus (CS+; the odor that will be or has been paired with sucrose reward) and the unpaired CS− (the odor that will be or has been specifically unpaired with sucrose reward). A single neuron, the pedunculus-extrinsic neuron number 1 (PE1), was identified on the basis of its firing pattern, and other neurons were grouped together as non-PE1 neurons. PE1 reduces its response to CS+ and does not change its response to CS−after learning. Most non-PE1 neurons do not change their responses during learning, but some decrease, and one neuron increases its response to CS+. PE1 receives inhibitory synaptic inputs, and neuroanatomical studies indicate closely attached GABA-immune reactive profiles originating at least partially from neurons of the protocerebral–calycal tract (PCT). Thus, either the associative reduction of odor responses originates within the PE1 via a long-term depression (LTD)-like mechanism, or PE1 receives stronger inhibition for the learned odor from the PCT neurons or from Kenyon cells. In any event, as the decreased firing of PE1 correlates with the increased probability of behavioral responses, our data suggest that the mushroom bodies exert general inhibition over sensory–motor connections, which relaxes selectively for learned stimuli.


The Journal of Comparative Neurology | 1998

Mushroom bodies of the cockroach: Activity and identities of neurons recorded in freely moving animals

Makoto Mizunami; Ryuichi Okada; Yongsheng Li; Nicholas J. Strausfeld

This article describes novel attributes of the mushroom bodies of cockroaches revealed by recording from neurons in freely moving insects. The results suggest several hitherto unrecognized functions of the mushroom bodies: extrinsic neurons that discriminate between imposed and self‐generated sensory stimulation, extrinsic neurons that monitor motor actions, and a third class of extrinsic neurons that predict episodes of locomotion and modulate their activity depending on the turning direction. Electrophysiological units have been correlated with neurons that were partially stained by uptake of copper ions and silver intensification. Neurons so revealed correspond to Golgi‐impregnated or Lucifer yellow‐filled neurons and demonstrate that their processes generally ascend to other areas of the protocerebrum. The present results support the idea of multiple roles for the mushroom bodies. These include sensory discrimination, the integration of sensory perception with motor actions, and, as described in the companion article, a role in place memory. J. Comp. Neurol. 402:501–519, 1998.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 1999

Sensory responses and movement-related activities in extrinsic neurons of the cockroach mushroom bodies

Ryuichi Okada; J. Ikeda; Makoto Mizunami

Abstract We have previously reported that most units in the input regions of the cockroach mushroom bodies have activities related to sensory inputs, while the majority of units in the output regions are related to movements of the animal. In the present study, we were able to attain a more satisfactory isolation of single units by using thinner wires and further characterize the activities of units in the mushroom body output regions. Forty-one units recorded here were classified into three types: sensory, movement-related, and sensori-motor units. Different units from each group exhibited a great variety in activities. Some movement-related and sensori-motor units exhibited activity preceding the onset of movements. We propose that the mushroom body participates in the integration of a variety of sensory and motor signals, possibly for initiating and maintaining motor action. While different neurons displayed a great diversity of responses, the activities of multiple neurons recorded simultaneously exhibited similar, but not identical, responses. These neurons appeared to locate adjacent to each other and may represent a cluster of extrinsic neurons that act synergistically to transmit a specific set of mushroom body output signals.


The Journal of Comparative Neurology | 2003

Distribution of dendrites of descending neurons and its implications for the basic organization of the cockroach brain

Ryuichi Okada; Midori Sakura; Makoto Mizunami

To determine precisely the brain areas from which descending neurons (DNs) originate, we examined the distribution of somata and dendrites of DNs in the cockroach brain by retrogradely filling their axons from the cervical connective. At least 235 pairs of somata of DNs were stained, and most of these were grouped into 22 clusters. Their dendrites were distributed in most brain areas, including lateral and medial protocerebra, which are major termination areas of output neurons of the mushroom body, but not in the optic and antennal lobes, the mushroom body, the central complex, or the posteroventral part of the lateral horn. The last area is the termination area of major types of olfactory projection neurons from the antennal lobe, i.e., uni‐ and macroglomerular projection neurons, so these neurons have no direct connections with DNs. The distribution of axon terminals of ascending neurons overlaps with that of DN dendrites. We propose, based on these findings, that there are numerous parallel processing streams from cephalic sensory areas to thoracic locomotory centers, many of which are via premotor brain areas from which DNs originate. In addition, outputs from the mushroom body, central complex, and posteroventral part of the lateral horn converge on some of the premotor areas, presumably to modulate the activity of some sensorimotor pathways. We propose, based on our results and documented findings, that many parallel processing streams function in various forms of reflexive and relatively stereotyped behaviors, whereas indirect pathways govern some forms of experience‐dependent modification of behavior. J. Comp. Neurol. 458:158–174, 2003.


The Journal of Comparative Neurology | 1998

Topography of four classes of Kenyon cells in the mushroom bodies of the cockroach

Makoto Mizunami; Masayuki Iwasaki; Ryuichi Okada; Michiko Nishikawa

Mushroom bodies (MBs), which are higher centers in the insect brain, are implicated in associative memory and in the control of some behaviors. Intrinsic neurons of the MB, called Kenyon cells, receive synaptic inputs from axon terminals of input neurons in the calyx. Axons of Kenyon cells project into the pedunculus and to the α and β lobes, where they make synaptic connections with dendrites of extrinsic (output) neurons. In this study, we examined the morphology of Kenyon cells in the cockroach by using Golgi stains and found that they can be classified into four classes (K1, K2, K3, and K4), according to the diameter, location, and morphology of the cell bodies, dendrites, and axons. The somata of Kenyon cells of different classes occupy different concentric zones; Kl cells occupy the most central zone, and K4 cells occupy the most peripheral zone. The main processes of Kenyon cells of different classes also occupy different concentric zones in the calyx. Dendrites of K2 and K3 cells are distributed throughout the calycal neuropil, whereas those of K1 and K4 cells cover the outer and inner halves of the depth of the neuropil, respectively. In the pedunculus and the α and β lobes, axons of Kenyon cells of different classes occupy different zones, although the separation is not complete. A class of extrinsic neurons in the α lobe has dendrite‐like arbors that cover the zones where either K1, K2, or K3 are located. These neurons probably transmit signals of each class of Kenyon cells. We conclude that, in the cockroach, four classes of Kenyon cells subdivide the cell body region, pedunculus, and lobes of the MBs, whereas subdivision is less prominent in the calycal neuropil. J. Comp. Neurol. 399:162–175, 1998.


Neuroscience Letters | 1997

Modular structures in the mushroom body of the cockroach

Makoto Mizunami; Masayuki Iwasaki; Michiko Nishikawa; Ryuichi Okada

The mushroom body (MB) is a higher center of the insect brain and is critical to olfactory and other forms of associative memory. Here, we report that repetitive modular subunits, which we refer to as slabs, are present in the internal matrix of the alpha lobe, a major output neuropil of the MB in the cockroach. The methods employed were osmium-ethyl gallate, Bodian-reduced silver, and Golgi staining procedures. A total of 15 dark and 15 pale slabs, each consisting of specific subsets of intrinsic neurons (Kenyon cells), alternate throughout the length of the alpha lobe. One of the major classes of MB output neurons, which are postsynaptic to Kenyon cells, exhibited segmented dendritic arbors that interact with every other slabs, i.e. only either dark or pale slabs. As each output neuron interacts with each specific set of dark or pale slabs, the slab likely functions as a unit for transmitting MB output signals.


The Journal of Neuroscience | 2013

Involvement of Insulin-Like Peptide in Long-Term Synaptic Plasticity and Long-Term Memory of the Pond Snail Lymnaea stagnalis

Jun Murakami; Ryuichi Okada; Hisayo Sadamoto; Suguru Kobayashi; Koichi Mita; Yuki Sakamoto; Miki Yamagishi; Dai Hatakeyama; Emi Otsuka; Akiko Okuta; Hiroshi Sunada; Satoshi Takigami; Manabu Sakakibara; Yutaka Fujito; Masahiko Awaji; Shunsuke Moriyama; Ken Lukowiak; Etsuro Ito

The pond snail Lymnaea stagnalis is capable of learning taste aversion and consolidating this learning into long-term memory (LTM) that is called conditioned taste aversion (CTA). Previous studies showed that some molluscan insulin-related peptides (MIPs) were upregulated in snails exhibiting CTA. We thus hypothesized that MIPs play an important role in neurons underlying the CTA–LTM consolidation process. To examine this hypothesis, we first observed the distribution of MIP II, a major peptide of MIPs, and MIP receptor and determined the amounts of their mRNAs in the CNS. MIP II was only observed in the light green cells in the cerebral ganglia, but the MIP receptor was distributed throughout the entire CNS, including the buccal ganglia. Next, when we applied exogenous mammalian insulin, secretions from MIP-containing cells or partially purified MIPs, to the isolated CNS, we observed a long-term change in synaptic efficacy (i.e., enhancement) of the synaptic connection between the cerebral giant cell (a key interneuron for CTA) and the B1 motor neuron (a buccal motor neuron). This synaptic enhancement was blocked by application of an insulin receptor antibody to the isolated CNS. Finally, injection of the insulin receptor antibody into the snail before CTA training, while not blocking the acquisition of taste aversion learning, blocked the memory consolidation process; thus, LTM was not observed. These data suggest that MIPs trigger changes in synaptic connectivity that may be correlated with the consolidation of taste aversion learning into CTA–LTM in the Lymnaea CNS.


Apidologie | 2011

A new approach for the simultaneous tracking of multiple honeybees for analysis of hive behavior

Toshifumi Kimura; Mizue Ohashi; Ryuichi Okada; Hidetoshi Ikeno

Social activities are among the most striking of animal behaviors, and the clarification of their mechanisms is a major subject in ethology. Honeybees are a good model for revealing these mechanisms because they display various social behaviors, such as division of labor, in their colonies. Image processing is a precise and convenient tool for obtaining animal behavior data, but even recent methods are inadequate for the identification or description of honeybee behavior. This is because of the difficulty distinguishing between the large number of individuals in a small hive and their multiple movements. The present study developed a new computer-aided system, using a vector quantization method, for the identification and behavioral tracking of individual honeybees. The vector quantization method enabled separation of honeybee bodies in photographs recorded as a movie. This system succeeded in analyzing a huge number of frames quickly and can thus save both time and labor. Moreover, the system identified more than 72% of the bees in a hive and found and determined the active areas in the hive by extracting the trajectories of walking bees. In addition, useful behavioral data on the honeybee waggle dance were obtained using the present system.


Neurobiology of Learning and Memory | 2014

What are the elements of motivation for acquisition of conditioned taste aversion

Koichi Mita; Akiko Okuta; Ryuichi Okada; Dai Hatakeyama; Emi Otsuka; Miki Yamagishi; Mika Morikawa; Yuki Naganuma; Yutaka Fujito; Varvara E. Dyakonova; Ken Lukowiak; Etsuro Ito

The pond snail Lymnaea stagnalis is capable of being classically conditioned to avoid food and to consolidate this aversion into a long-term memory (LTM). Previous studies have shown that the length of food deprivation is important for both the acquisition of taste aversion and its consolidation into LTM, which is referred to as conditioned taste aversion (CTA). Here we tested the hypothesis that the hemolymph glucose concentration is an important factor in the learning and memory of CTA. One-day food deprivation resulted in the best learning and memory, whereas more prolonged food deprivation had diminishing effects. Five-day food deprivation resulted in snails incapable of learning or remembering. During this food deprivation period, the hemolymph glucose concentration decreased. If snails were fed for 2days following the 5-day food deprivation, their glucose levels increased significantly and they exhibited both learning and memory, but neither learning nor memory was as good as with the 1-day food-deprived snails. Injection of the snails with insulin to reduce glucose levels resulted in better learning and memory. Insulin is also known to cause a long-term enhancement of synaptic transmission between the feeding-related neurons. On the other hand, injection of glucose into 5-day food-deprived snails did not alter their inability to learn and remember. However, if these snails were fed on sucrose for 3min, they then exhibited learning and memory formation. Our data suggest that hemolymph glucose concentration is an important factor in motivating acquisition of CTA in Lymnaea and that the action of insulin in the brain and the feeding behavior are also important factors.


The Journal of Experimental Biology | 2013

Paired pulse ratio analysis of insulin-induced synaptic plasticity in the snail brain

Jun Murakami; Ryuichi Okada; Yutaka Fujito; Manabu Sakakibara; Ken Lukowiak; Etsuro Ito

SUMMARY Insulins action in the brain can directly alter cognitive functioning. We have recently shown that molluscan insulin-related peptides are upregulated following a conditioned taste aversion (CTA) training procedure. In addition, when mammalian insulin is superfused over the isolated Lymnaea stagnalis central nervous system, it elicits long-term synaptic enhancement at the monosynaptic connection between the cerebral giant cell and the buccal 1 (B1) motor neuron. This synaptic enhancement is thought to be a neural correlate of CTA. Here, we examined whether the observed changes in synaptic plasticity were the result of presynaptic and/or postsynaptic alterations using the paired pulse procedure. The paired pulse ratio was unaltered following insulin application, suggesting that insulins effects on synaptic plasticity are mediated postsynaptically in the B1 motor neuron. Thus, it was suggested that postsynaptic changes need to be considered when insulins actions on synaptic plasticity are examined.

Collaboration


Dive into the Ryuichi Okada's collaboration.

Top Co-Authors

Avatar

Etsuro Ito

Tokushima Bunri University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emi Otsuka

Tokushima Bunri University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge