Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryuichi Sakate is active.

Publication


Featured researches published by Ryuichi Sakate.


Genome Biology | 2012

Whole-genome sequencing and analysis of the Malaysian cynomolgus macaque (Macaca fascicularis) genome

Atsunori Higashino; Ryuichi Sakate; Yosuke Kameoka; Ichiro Takahashi; Makoto Hirata; Reiko Tanuma; Tohru Masui; Yasuhiro Yasutomi; Naoki Osada

BackgroundThe genetic background of the cynomolgus macaque (Macaca fascicularis) is made complex by the high genetic diversity, population structure, and gene introgression from the closely related rhesus macaque (Macaca mulatta). Herein we report the whole-genome sequence of a Malaysian cynomolgus macaque male with more than 40-fold coverage, which was determined using a resequencing method based on the Indian rhesus macaque genome.ResultsWe identified approximately 9.7 million single nucleotide variants (SNVs) between the Malaysian cynomolgus and the Indian rhesus macaque genomes. Compared with humans, a smaller nonsynonymous/synonymous SNV ratio in the cynomolgus macaque suggests more effective removal of slightly deleterious mutations. Comparison of two cynomolgus (Malaysian and Vietnamese) and two rhesus (Indian and Chinese) macaque genomes, including previously published macaque genomes, suggests that Indochinese cynomolgus macaques have been more affected by gene introgression from rhesus macaques. We further identified 60 nonsynonymous SNVs that completely differentiated the cynomolgus and rhesus macaque genomes, and that could be important candidate variants for determining species-specific responses to drugs and pathogens. The demographic inference using the genome sequence data revealed that Malaysian cynomolgus macaques have experienced at least three population bottlenecks.ConclusionsThis list of whole-genome SNVs will be useful for many future applications, such as an array-based genotyping system for macaque individuals. High-quality whole-genome sequencing of the cynomolgus macaque genome may aid studies on finding genetic differences that are responsible for phenotypic diversity in macaques and may help control genetic backgrounds among individuals.


Nucleic Acids Research | 2010

H-DBAS: human-transcriptome database for alternative splicing: update 2010

Jun-ichi Takeda; Yutaka Suzuki; Ryuichi Sakate; Yoshiharu Sato; Takashi Gojobori; Tadashi Imanishi; Sumio Sugano

H-DBAS (http://h-invitational.jp/h-dbas/) is a specialized database for human alternative splicing (AS) based on H-Invitational full-length cDNAs. In this update, for better annotations of AS events, we correlated RNA-Seq tag information to the AS exons and splice junctions. We generated a total of 148 376 598 RNA-Seq tags from RNAs extracted from cytoplasmic, nuclear and polysome fractions. Analysis of the RNA-Seq tags allowed us to identify 90 900 exons that are very likely to be used for protein synthesis. On the other hand, 254 AS junctions of human RefSeq transcripts are unique to nuclear RNA and may not have any translational consequences. We also present a new comparative genomics viewer so that users can empirically understand the evolutionary turnover of AS. With the unique experimental data closely connected with intensively curated cDNA information, H-DBAS provides a unique platform for the analysis of complex AS.


Nucleic Acids Research | 2010

H-InvDB in 2009: extended database and data mining resources for human genes and transcripts

Chisato Yamasaki; Katsuhiko Murakami; Jun-ichi Takeda; Yoshiharu Sato; Akiko Ogura Noda; Ryuichi Sakate; Takuya Habara; Hajime Nakaoka; Fusano Todokoro; Akihiro Matsuya; Tadashi Imanishi; Takashi Gojobori

We report the extended database and data mining resources newly released in the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). H-InvDB is a comprehensive annotation resource of human genes and transcripts, and consists of two main views and six sub-databases. The latest release of H-InvDB (release 6.2) provides the annotation for 219 765 human transcripts in 43 159 human gene clusters based on human full-length cDNAs and mRNAs. H-InvDB now provides several new annotation features, such as mapping of microarray probes, new gene models, relation to known ncRNAs and information from the Glycogene database. H-InvDB also provides useful data mining resources—‘Navigation search’, ‘H-InvDB Enrichment Analysis Tool (HEAT)’ and web service APIs. ‘Navigation search’ is an extended search system that enables complicated searches by combining 16 different search options. HEAT is a data mining tool for automatically identifying features specific to a given human gene set. HEAT searches for H-InvDB annotations that are significantly enriched in a user-defined gene set, as compared with the entire H-InvDB representative transcripts. H-InvDB now has web service APIs of SOAP and REST to allow the use of H-InvDB data in programs, providing the users extended data accessibility.


Nucleic Acids Research | 2007

Evola : Ortholog database of all human genes in H-InvDB with manual curation of phylogenetic trees

Akihiro Matsuya; Ryuichi Sakate; Yoshihiro Kawahara; Kanako O. Koyanagi; Yoshiharu Sato; Yasuyuki Fujii; Chisato Yamasaki; Takuya Habara; Hajime Nakaoka; Fusano Todokoro; Kaori Yamaguchi; Toshinori Endo; Satoshi Oota; Wojciech Makalowski; Kazuho Ikeo; Yoshiyuki Suzuki; Kousuke Hanada; Katsuyuki Hashimoto; Momoki Hirai; Hisakazu Iwama; Naruya Saitou; Aiko T. Hiraki; Lihua Jin; Yayoi Kaneko; Masako Kanno; Katsuhiko S. Murakami; Akiko Ogura Noda; Naomi Saichi; Ryoko Sanbonmatsu; Mami Suzuki

Orthologs are genes in different species that evolved from a common ancestral gene by speciation. Currently, with the rapid growth of transcriptome data of various species, more reliable orthology information is prerequisite for further studies. However, detection of orthologs could be erroneous if pairwise distance-based methods, such as reciprocal BLAST searches, are utilized. Thus, as a sub-database of H-InvDB, an integrated database of annotated human genes (http://h-invitational.jp/), we constructed a fully curated database of evolutionary features of human genes, called ‘Evola’. In the process of the ortholog detection, computational analysis based on conserved genome synteny and transcript sequence similarity was followed by manual curation by researchers examining phylogenetic trees. In total, 18 968 human genes have orthologs among 11 vertebrates (chimpanzee, mouse, cow, chicken, zebrafish, etc.), either computationally detected or manually curated orthologs. Evola provides amino acid sequence alignments and phylogenetic trees of orthologs and homologs. In ‘dN/dS view’, natural selection on genes can be analyzed between human and other species. In ‘Locus maps’, all transcript variants and their exon/intron structures can be compared among orthologous gene loci. We expect the Evola to serve as a comprehensive and reliable database to be utilized in comparative analyses for obtaining new knowledge about human genes. Evola is available at http://www.h-invitational.jp/evola/.


Nucleic Acids Research | 2008

Low conservation and species-specific evolution of alternative splicing in humans and mice: comparative genomics analysis using well-annotated full-length cDNAs

Jun-ichi Takeda; Yutaka Suzuki; Ryuichi Sakate; Yoshiharu Sato; Masahide Seki; Takuma Irie; Nono Takeuchi; Takuya Ueda; Mitsuteru Nakao; Sumio Sugano; Takashi Gojobori; Tadashi Imanishi

Using full-length cDNA sequences, we compared alternative splicing (AS) in humans and mice. The alignment of the human and mouse genomes showed that 86% of 199 426 total exons in human AS variants were conserved in the mouse genome. Of the 20 392 total human AS variants, however, 59% consisted of all conserved exons. Comparing AS patterns between human and mouse transcripts revealed that only 431 transcripts from 189 loci were perfectly conserved AS variants. To exclude the possibility that the full-length human cDNAs used in the present study, especially those with retained introns, were cloning artefacts or prematurely spliced transcripts, we experimentally validated 34 such cases. Our results indicate that even retained-intron type transcripts are typically expressed in a highly controlled manner and interact with translating ribosomes. We found non-conserved AS exons to be predominantly outside the coding sequences (CDSs). This suggests that non-conserved exons in the CDSs of transcripts cause functional constraint. These findings should enhance our understanding of the relationship between AS and species specificity of human genes.


Molecular Biology and Evolution | 2014

Whole-Genome Sequencing of Tibetan Macaque (Macaca thibetana) Provides New Insight into the Macaque Evolutionary History

Zhenxin Fan; Guang Zhao; Peng Li; Naoki Osada; Jinchuan Xing; Yong Yi; Lianming Du; Pedro Silva; Hongxing Wang; Ryuichi Sakate; Xiuyue Zhang; Huailiang Xu; Bisong Yue; Jing Li

Macaques are the most widely distributed nonhuman primates and used as animal models in biomedical research. The availability of full-genome sequences from them would be essential to both biomedical and primate evolutionary studies. Previous studies have reported whole-genome sequences from rhesus macaque (Macaca mulatta) and cynomolgus macaque (M. fascicularis, CE), both of which belong to the fascicularis group. Here, we present a 37-fold coverage genome sequence of the Tibetan macaque (M. thibetana; TM). TM is an endemic species to China belonging to the sinica group. On the basis of mapping to the rhesus macaque genome, we identified approximately 11.9 million single-nucleotide variants), of which 3.9 million were TM specific, as assessed by comparison two Chinese rhesus macaques (CR) and two CE genomes. Some genes carried TM-specific homozygous nonsynonymous variants (TSHNVs), which were scored as deleterious in human by both PolyPhen-2 and SIFT (Sorting Tolerant From Intolerant) and were enriched in the eye disease genes. In total, 273 immune response and disease-related genes carried at least one TSHNV. The heterozygosity rates of two CRs (0.002617 and 0.002612) and two CEs (0.003004 and 0.003179) were approximately three times higher than that of TM (0.000898). Polymerase chain reaction resequencing of 18 TM individuals showed that 29 TSHNVs exhibited high allele frequencies, thus confirming their low heterozygosity. Genome-wide genetic divergence analysis demonstrated that TM was more closely related to CR than to CE. We further detected unusual low divergence regions between TM and CR. In addition, after applying statistical criteria to detect putative introgression regions (PIRs) in the TM genome, up to 239,620 kb PIRs (8.84% of the genome) were identified. Given that TM and CR have overlapping geographical distributions, had the same refuge during the Middle Pleistocene, and show similar mating behaviors, it is highly likely that there was an ancient introgression event between them. Moreover, demographic inferences revealed that TM exhibited a similar demographic history as other macaques until 0.5 Ma, but then it maintained a lower effective population size until present time. Our study has provided new insight into the macaque evolutionary history, confirming hybridization events between macaque species groups based on genome-wide data.


Bioinformatics | 2009

G-compass

Yoshihiro Kawahara; Ryuichi Sakate; Akihiro Matsuya; Katsuhiko S. Murakami; Yoshiharu Sato; Hao Zhang; Takashi Gojobori; Takeshi Itoh; Tadashi Imanishi

Summary: G-compass is designed for efficient comparative genome analysis between human and other vertebrate genomes. The current version of G-compass allows us to browse two corresponding genomic regions between human and another species in parallel. One-to-one evolutionarily conserved regions (i.e. orthologous regions) between species are highlighted along the genomes. Information such as locations of duplicated regions, copy number variations and mammalian ultra-conserved elements is also provided. These features of G-compass enable us to easily determine patterns of genomic rearrangements and changes in gene orders through evolutionary time. Since G-compass is a satellite database of H-InvDB, which is a comprehensive annotation resource for human genes and transcripts, users can easily refer to manually curated functional annotations and other abundant biological information for each human transcript. G-compass is expected to be a valuable tool for comparing human and model organisms and promoting the exchange of functional information. Availability: G-compass is freely available at http://www.h-invitational.jp/g-compass/. Contact: [email protected]


BMC Research Notes | 2012

Sagace: A web-based search engine for biomedical databases in Japan

Mizuki Morita; Yoshinobu Igarashi; Maori Ito; Yi An Chen; Chioko Nagao; Yuki Sakaguchi; Ryuichi Sakate; Tohru Masui; Kenji Mizuguchi

BackgroundIn the big data era, biomedical research continues to generate a large amount of data, and the generated information is often stored in a database and made publicly available. Although combining data from multiple databases should accelerate further studies, the current number of life sciences databases is too large to grasp features and contents of each database.FindingsWe have developed Sagace, a web-based search engine that enables users to retrieve information from a range of biological databases (such as gene expression profiles and proteomics data) and biological resource banks (such as mouse models of disease and cell lines). With Sagace, users can search more than 300 databases in Japan. Sagace offers features tailored to biomedical research, including manually tuned ranking, a faceted navigation to refine search results, and rich snippets constructed with retrieved metadata for each database entry.ConclusionsSagace will be valuable for experts who are involved in biomedical research and drug development in both academia and industry. Sagace is freely available athttp://sagace.nibio.go.jp/en/.


Gene | 2012

Evolutionary growth process of highly conserved sequences in vertebrate genomes

Minaka Ishibashi; Akiko Ogura Noda; Ryuichi Sakate; Tadashi Imanishi

Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage.


Current Clinical Pharmacology | 2018

Trends of Clinical Trials for Drug Development in Rare Diseases

Ryuichi Sakate; Akiko Fukagawa; Yuri Takagaki; Hanayuki Okura; Akifumi Matsuyama

Background Drug development for rare diseases is challenging because it is difficult to obtain relevant data from very few patients. It must be informative to grasp current status of clinical trials for drug development in rare diseases. Objective Clinical trials in rare diseases are to be outlined and compared among the US, EU and Japan. Method ClinicalTrials.gov (NCT, National Clinical Trial), EU Clinical Trials Register (EUCTR) and the Japan Primary Registries Network (JPRN) were analyzed. Clinical trials involving information on rare diseases and drugs were extracted by text-mining, based on the diseases and drugs derived from Orphanet and DrugBank, respectively. Results In total, 28,526 clinical trials were extracted, which studied 1,535 rare diseases and 1,539 drugs. NCT had the larg-est number of trials, involving 1,252 diseases and 1,332 drugs. EUCTR and JPRN also had registry-specific diseases (250 and 22, respectively) and drugs (172 and 29, respectively) that should not be missed. Among the 1,535 rare diseases, most diseases were studied in only a limited number of trials; 70% of diseases were studied in fewer than 10 trials, and 28% were studied in only one. Additionally, most studied rare diseases were cancer-related ones. Conclusion This study has revealed the characteristics of the clinical trials in rare diseases among the US, EU and Japan. The number of trials for rare diseases was limited especially for non-cancer-related ones. This information could contribute to drug development such as drug-repositioning in rare diseases.

Collaboration


Dive into the Ryuichi Sakate's collaboration.

Top Co-Authors

Avatar

Tadashi Imanishi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takashi Gojobori

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akiko Ogura Noda

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jun-ichi Takeda

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takuya Habara

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chisato Yamasaki

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Katsuhiko S. Murakami

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Fusano Todokoro

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge