Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryushi Kawakami is active.

Publication


Featured researches published by Ryushi Kawakami.


Journal of Biological Chemistry | 2002

ADP-dependent glucokinase/phosphofructokinase, a novel bifunctional enzyme from the hyperthermophilic archaeon Methanococcus jannaschii.

Haruhiko Sakuraba; Issei Yoshioka; Shinji Koga; Mamoru Takahashi; Yuki Kitahama; Takenori Satomura; Ryushi Kawakami; Toshihisa Ohshima

A gene encoding an ADP-dependent phosphofructokinase homologue has been identified in the hyperthermophilic archaeon Methanococcus jannaschii via genome sequencing. The gene encoded a protein of 462 amino acids with a molecular weight of 53,361. The deduced amino acid sequence of the gene showed 52 and 29% identities to the ADP-dependent phosphofructokinase and glucokinase from Pyrococcus furiosus, respectively. The gene was overexpressed inEscherichia coli, and the produced enzyme was purified and characterized. To our surprise, the enzyme showed high ADP-dependent activities for both glucokinase and phosphofructokinase. A native molecular mass was estimated to be 55 kDa, and this indicates the enzyme is monomeric. The reaction rate for the phosphorylation of d-glucose was almost 3 times that for d-fructose 6-phosphate. The K m values for d-fructose 6-phosphate and d-glucose were calculated to be 0.010 and 1.6 mm, respectively. TheK m values for ADP were 0.032 and 0.63 mm when d-glucose and d-fructose 6-phosphate were used as a phosphoryl group acceptor, respectively. The gene encoding the enzyme is proposed to be an ancestral gene of an ADP-dependent phosphofructokinase and glucokinase. A gene duplication event might lead to the two enzymatic activities.


Applied and Environmental Microbiology | 2007

Sequential Aldol Condensation Catalyzed by Hyperthermophilic 2-Deoxy-d-Ribose-5-Phosphate Aldolase

Haruhiko Sakuraba; Kazunari Yoneda; Kumiko Yoshihara; Kyoko Satoh; Ryushi Kawakami; Yoshihiro Uto; Hideaki Tsuge; Katsuyuki Takahashi; Hitoshi Hori; Toshihisa Ohshima

ABSTRACT Genes encoding 2-deoxy-d-ribose-5-phosphate aldolase (DERA) homologues from two hyperthermophiles, the archaeon Pyrobaculum aerophilum and the bacterium Thermotoga maritima, were expressed individually in Escherichia coli, after which the structures and activities of the enzymes produced were characterized and compared with those of E. coli DERA. To our surprise, the two hyperthermophilic DERAs showed much greater catalysis of sequential aldol condensation using three acetaldehydes as substrates than the E. coli enzyme, even at a low temperature (25°C), although both enzymes showed much less 2-deoxy-d-ribose-5-phosphate synthetic activity. Both the enzymes were highly resistant to high concentrations of acetaldehyde and retained about 50% of their initial activities after a 20-h exposure to 300 mM acetaldehyde at 25°C, whereas the E. coli DERA was almost completely inactivated after a 2-h exposure under the same conditions. The structure of the P. aerophilum DERA was determined by X-ray crystallography to a resolution of 2.0 Å. The main chain coordinate of the P. aerophilum enzyme monomer was quite similar to those of the T. maritima and E. coli enzymes, whose crystal structures have already been solved. However, the quaternary structure of the hyperthermophilic enzymes was totally different from that of the E. coli DERA. The areas of the subunit-subunit interface in the dimer of the hyperthermophilic enzymes are much larger than that of the E. coli enzyme. This promotes the formation of the unique dimeric structure and strengthens the hydrophobic intersubunit interactions. These structural features are considered responsible for the extremely high stability of the hyperthermophilic DERAs.


Journal of Biological Chemistry | 2002

Dye-linked d-Proline Dehydrogenase from Hyperthermophilic Archaeon Pyrobaculum islandicum Is a Novel FAD-dependent Amino Acid Dehydrogenase

Takenori Satomura; Ryushi Kawakami; Haruhiko Sakuraba; Toshihisa Ohshima

The activity of dye-linkedd-proline dehydrogenase was found in the crude extract of a hyperthermophilic archaeon, Pyrobaculum islandicum JCM 9189. The dye-linked d-proline dehydrogenase was a membrane associated enzyme and was solubilized from the membrane fractions by treatment with Tween 20. The solubilized enzyme was purified 34-fold in the presence of 0.1% Tween 20 by four sequential chromatographies. The enzyme has a molecular mass of about 145 kDa and consisted of homotetrameric subunits with a molecular mass of about 42 kDa. The N-terminal amino acid sequence of the subunit was MKVAIVGGGIIGLFTAYHLRQQGADVVI. The enzyme retained its full activity both after incubation at 80 °C for 10 min and after incubation in the range of pH 4.0–10.0 at 50 °C for 10 min. The enzyme-catalyzed dehydrogenation of several d-amino acids was carried out using 2,6-dichloroindophenol as an electron acceptor, andd-proline was the most preferred substrate among thed-amino acids. The Michaelis constants ford-proline and 2,6-dichloroindophenol were determined to be 4.2 and 0.14 mm, respectively. Δ1-Pyrroline-2-carboxylate was identified as the reaction product from d-proline by thin layer chromatography. The prosthetic group of the enzyme was identified to be FAD by high-performance liquid chromatography. The gene encoding the enzyme was cloned and expressed in Escherichia coli. The nucleotide sequence of the dye-linked d-proline dehydrogenase gene was determined and encoded a peptide of 363 amino acids with a calculated molecular weight of 40,341. The amino acid sequence of the Pb. islandicum enzyme showed the highest similarity (38%) with that of the probable oxidoreductase inSulfolobus solfataricus, but low similarity with those ofd-alanine dehydrogenases from the mesophiles so far reported. This shows that the membrane-bound d-proline dehydrogenase from Pb. islandicum is a novel FAD-dependent amino acid dehydrogenase.


Applied and Environmental Microbiology | 2001

Purification, Characterization, and Application of a Novel Dye-Linked l-Proline Dehydrogenase from a Hyperthermophilic Archaeon, Thermococcus profundus

Haruhiko Sakuraba; Yoshinori Takamatsu; Takenori Satomura; Ryushi Kawakami; Toshihisa Ohshima

ABSTRACT The distribution of dye-linked l-amino acid dehydrogenases was investigated in several hyperthermophiles, and the activity of dye-linked l-proline dehydrogenase (dye-l-proDH, l-proline:acceptor oxidoreductase) was found in the crude extract of someThermococcales strains. The enzyme was purified to homogeneity from a hyperthermophilic archaeon, Thermococcus profundus DSM 9503, which exhibited the highest specific activity in the crude extract. The molecular mass of the enzyme was about 160 kDa, and the enzyme consisted of heterotetrameric subunits (α2 β2) with two different molecular masses of about 50 and 40 kDa. The N-terminal amino acid sequences of the α-subunit (50-kDa subunit) and the β-subunit (40-kDa subunit) were MRLTEHPILDFSERRGRKVTIHF and XRSEAKTVIIGGGIIGLSIAYNLAK, respectively. Dye-l-proDH was extraordinarily stable among the dye-linked dehydrogenases under various conditions: the enzyme retained its full activity upon incubation at 70°C for 10 min, and ca. 40% of the activity still remained after heating at 80°C for 120 min. The enzyme did not lose the activity upon incubation over a wide range of pHs from 4.0 to 10.0 at 50°C for 10 min. The enzyme exclusively catalyzed l-proline dehydrogenation using 2,6-dichloroindophenol (Cl2Ind) as an electron acceptor. The Michaelis constants for l-proline and Cl2Ind were determined to be 2.05 and 0.073 mM, respectively. The reaction product was identified as Δ1-pyrroline-5-carboxylate by thin-layer chromatography. The prosthetic group of the enzyme was identified as flavin adenine dinucleotide by high-pressure liquid chromatography. In addition, the simple and specific determination of l-proline at concentrations from 0.10 to 2.5 mM using the stable dye-l-proDH was achieved.


Extremophiles | 2002

L-aspartate oxidase is present in the anaerobic hyperthermophilic archaeon Pyrococcus horikoshii OT-3: characteristics and role in the de novo biosynthesis of nicotinamide adenine dinucleotide proposed by genome sequencing.

Haruhiko Sakuraba; Takenori Satomura; Ryushi Kawakami; Sanae Yamamoto; Yutaka Kawarabayasi; Hisasi Kikuchi; Toshihisa Ohshima

A gene encoding the L-aspartate oxidase homologue was identified via genome sequencing in the anaerobic hyperthermophilic archaeon Pyrococcus horikoshii OT-3. We succeeded in expressing the encoding gene in Escherichia coli and purified the product to homogeneity. Characterization of the protein revealed that it is the most thermostable L-aspartate oxidase detected so far. In addition to the oxidase activity, the enzyme catalyzed L-aspartate dehydrogenation in the presence of an artificial electron acceptor such as phenazine methosulfate, 2,6-dichlorophenol-indophenol, and ferricyanide. L-Aspartate oxidase is known to function as the first enzyme in the de novo NAD biosynthetic pathway in prokaryotes. By a similarity search in public databases, the genes that encode the homologue of all other enzymes involved in the pathway were identified in the P. horikoshii OT-3 genome. This suggests that P. horikoshii OT-3 may use the de novo NAD biosynthetic pathway under anaerobic conditions.


Applied and Environmental Microbiology | 2005

First Archaeal Inorganic Polyphosphate/ATP-Dependent NAD Kinase, from Hyperthermophilic Archaeon Pyrococcus horikoshii: Cloning, Expression, and Characterization

Haruhiko Sakuraba; Ryushi Kawakami; Toshihisa Ohshima

ABSTRACT The gene (PH1074) encoding the NAD kinase of the hyperthermophilic archaeon Pyrococcus horikoshii was identified in the genome database, cloned, and functionally expressed in Escherichia coli. The recombinant enzyme was purified to homogeneity by heat treatment at 90°C for 20 min and one successive HiTrap affinity chromatography step. The purified enzyme was easily precipitated by dialysis against phosphate buffer without NaCl and imidazole and was usually stored in buffer containing 0.5 M NaCl and 0.5 M imidazole to avoid precipitation. The molecular mass of the active enzyme was determined to be 145 kDa by a gel filtration method, and the enzyme was composed of a tetramer of 37-kDa subunits. The archaeal enzyme utilized several nucleoside triphosphates, such as GTP, CTP, UTP, and ITP, as well as ATP and inorganic polyphosphates [poly(P)] as phosphoryl donors for NAD phosphorylation. The enzyme utilized poly(P)27 (the average length of the phosphoryl chain was 27) as the most active inorganic polyphosphate for NAD phosphorylation. Thus, this enzyme is categorized as an inorganic polyphosphate/ATP-dependent NAD kinase. The enzyme was the most thermostable NAD kinase found to date: its activity was not lost by incubation at 95°C for 10 min. The enzyme showed classical Michaelis-Menten-type kinetics for NAD and ATP, but not for poly(P)27. The Km values for NAD were determined to be 0.30 and 0.40 mM when poly(P)27 and ATP, respectively, were used as the phosphoryl donors. The Km value for ATP was 0.29 mM, and the concentration of poly(P)27 which gave half of the maximum enzyme activity was 0.59 mM. The enzyme required several metal cations, such as Mg2+, Mn2+, or Ni2+, for its activity. The deduced amino acid sequence showed a low level of identity to those of E. coli ATP-dependent NAD kinase (31%) and the inorganic polyphosphate/ATP-dependent NAD kinase of Mycobacterium tuberculosis (29%). This is the first description of the characteristics of a poly(P)/ATP-dependent NAD kinase from a hyperthermophilic archaeon.


FEBS Journal | 2005

A second novel dye-linked L-proline dehydrogenase complex is present in the hyperthermophilic archaeon Pyrococcus horikoshii OT-3

Ryushi Kawakami; Haruhiko Sakuraba; Hideaki Tsuge; Shuichiro Goda; Nobuhiko Katunuma; Toshihisa Ohshima

Two distinguishable activity bands for dye‐linked l‐proline dehydrogenase (PDH1 and PDH2) were detected when crude extract of the hyperthermophilic archaeon Pyrococcus horikoshii OT‐3 was run on a polyacrylamide gel. After purification, PDH1 was found to be composed of two different subunits with molecular masses of 56 and 43 kDa, whereas PDH2 was composed of four different subunits with molecular masses of 52, 46, 20 and 8 kDa. The native molecular masses of PDH1 and PDH2 were 440 and 101 kDa, respectively, indicating that PDH1 has an α4β4 structure, while PDH2 has an αβγδ structure. PDH2 was found to be similar to the dye‐linked l‐proline dehydrogenase complex from Thermococcus profundus, but PDH1 is a different type of enzyme. After production of the enzyme in Escherichia coli, high‐performance liquid chromatography showed the PDH1 complex to contain the flavins FMN and FAD as well as ATP. Gene expression and biochemical analyses of each subunit revealed that the β subunit bound FAD and exhibited proline dehydrogenase activity, while the α subunit bound ATP, but unlike the corresponding subunit in the T. profundus enzyme, it exhibited neither proline dehydrogenase nor NADH dehydrogenase activity. FMN was not bound to either subunit, suggesting it is situated at the interface between the α and β subunits. A comparison of the amino‐acid sequences showed that the ADP‐binding motif in the α subunit of PDH1 clearly differs from that in the α subunit of PDH2. It thus appears that a second novel dye‐linked l‐proline dehydrogenase complex is produced in P. horikoshii.


Journal of Bacteriology | 2007

Gene Cloning and Characterization of the Very Large NAD-Dependent l-Glutamate Dehydrogenase from the Psychrophile Janthinobacterium lividum, Isolated from Cold Soil

Ryushi Kawakami; Haruhiko Sakuraba; Toshihisa Ohshima

NAD-dependent l-glutamate dehydrogenase (NAD-GDH) activity was detected in cell extract from the psychrophile Janthinobacterium lividum UTB1302, which was isolated from cold soil and purified to homogeneity. The native enzyme (1,065 kDa, determined by gel filtration) is a homohexamer composed of 170-kDa subunits (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Consistent with these findings, gene cloning and sequencing enabled deduction of the amino acid sequence of the subunit, which proved to be comprised of 1,575 amino acids with a combined molecular mass of 169,360 Da. The enzyme from this psychrophile thus appears to belong to the GDH family characterized by very large subunits, like those expressed by Streptomyces clavuligerus and Pseudomonas aeruginosa (about 180 kDa). The entire amino acid sequence of the J. lividum enzyme showed about 40% identity with the sequences from S. clavuligerus and P. aeruginosa enzymes, but the central domains showed higher homology (about 65%). Within the central domain, the residues related to substrate and NAD binding were highly conserved, suggesting that this is the enzymes catalytic domain. In the presence of NAD, but not in the presence of NADP, this GDH exclusively catalyzed the oxidative deamination of l-glutamate. The stereospecificity of the hydride transfer to NAD was pro-S, which is the same as that of the other known GDHs. Surprisingly, NAD-GDH activity was markedly enhanced by the addition of various amino acids, such as l-aspartate (1,735%) and l-arginine (936%), which strongly suggests that the N- and/or C-terminal domains play regulatory roles and are involved in the activation of the enzyme by these amino acids.


Journal of Bioscience and Bioengineering | 2008

A novel flavin adenine dinucleotide (FAD) containing D-lactate dehydrogenase from the thermoacidophilic crenarchaeota Sulfolobus tokodaii strain 7: Purification, characterization and expression in Escherichia coli

Takenori Satomura; Ryushi Kawakami; Haruhiko Sakuraba; Toshihisa Ohshima

Dye-linked D-lactate dehydrogenase activity was found in the crude extract of a continental thermoacidophilic crenarchaeota, Sulfolobus tokodaii strain 7, and was purified 375-fold through four sequential chromatography steps. With a molecular mass of about 93 kDa, this enzyme was a homodimer comprised of identical subunits with molecular masses of about 48 kDa. The enzyme retained its full activity after incubation at 80 degrees C for 10 min and after incubation at pHs ranging from 6.5 to 10.0 for 30 min at 50 degrees C. The preferred substrate for this enzyme was D-lactate, with 2,6-dichloroindophenol serving as the electron acceptor. Using high-performance liquid chromatography (HPLC), the enzymes prosthetic group was determined to be flavin adenine dinucleotide (FAD). Its N-terminal amino acid sequence was MLEGIEYSQGEEREDFVGFKIKPKI. Using that sequence and previously reported genome information, the gene encoding the enzyme (ST0649) was identified. It was subsequently cloned and expressed in Escherichia coli and found to encode a polypeptide of 440 amino acids with a calculated molecular weight of 49,715. The amino acid sequence of this dye-linked D-lactate dehydrogenase showed higher homology (39% identity) with that of a glycolate oxidase subunit homologue from Archaeoglobus fulgidus, but less similarity (32% identity) to D-lactate dehydrogenase from A. fulgidus. Taken together, our findings indicate that the dye-linked D-lactate dehydrogenase from S. tokodaii is a novel type of FAD containing D-lactate dehydrogenase.


Science and Technology of Advanced Materials | 2006

L-Proline sensor based on layer-by-layer immobilization of thermostable dye-linked L-proline dehydrogenase and polymerized mediator

Haitao Zheng; Yutaka Hirose; Tomokazu Kimura; Shin-ichiro Suye; Teruo Hori; Hideo Katayama; Junichiro Arai; Ryushi Kawakami; Toshihisa Ohshima

Abstract L-Proline sensor has been fabricated through multilayer assembly of recombinant dye-linked L-proline dehydrogenase (L-proDH) originally from hyperthermophilic archaeon (Therococcus profundus) and polymerized mediator, poly(allylamine) ferrocene (PAA-Fc), on a gold electrode by electrostatic layer-by-layer alternate adsorption method. The characteristic redox peaks of ferrocene groups were obvious exhibited in cyclic voltammograms, and both anodic and cathodic peaks increased with PAA-Fc/L-proDH bilayer number which confirmed the formation of a multilayer structure. Further experiments showed that an electrode fabricated in this way catalyzed the oxidation of L-proline. It suggested that polymerized mediator could transfer electrons between electrode surface and immobilized L-proDH. Ampeormetric experiments showed that the current response to L-proline increased with PAA-Fc/L-proDH bilayer number. The stability of the sensor was measured, and it kept a 40% relative response after 30 days storage in buffer under 4 °C.

Collaboration


Dive into the Ryushi Kawakami's collaboration.

Top Co-Authors

Avatar

Toshihisa Ohshima

Osaka Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji Aki

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar

Nobuhiko Katunuma

Tokushima Bunri University

View shared research outputs
Top Co-Authors

Avatar

Yutaka Kawarabayasi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge